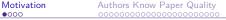
Accept this Paper

(Economic Theory Seminar, UK, May 2023)

Lones Smith Andrea Wilson Mavi & Melsi Wilson Wisconsin and Princeton



Princeton offers admission to 5.5 percent of Class of 2022 applicants

by Office of Communications

March 28, 2018, 4 p.m.

Selectivity as Excellence

Motivation

- Colleges advertise "selectivity"
- ▶ U.S. News and World Report college rankings puts 12.5% weight on selectivity
- ► The Princeton Review weights it as one of seven factors
- "Columbia Drops From #2 to #18 on University Rankings As School Officials Admit to Misleading Data" (09/12/22)
- Intuition: Since rejection rates are the de facto prices of better schools, better colleges should have higher rejection rates!

PRINCET NIAN

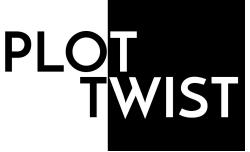
Princeton University accepts 0.00% of applicants to Class of 2027

Motivation

- ▶ Should the best colleges have the highest rejection rates?
- Should the best journals have the highest rejection rates?
- Better journals have higher standards, but get better papers.
- Which effect should dominate?

Goal: Is Selectivity Excellence?

- Should the best colleges have the highest rejection rates?
- Should the best journals have the highest rejection rates?
- ▶ Better journals have higher standards, but get better papers.
- Which effect should dominate?



- ► We show that selectivity *robustly fails* at elite journals
- ▶ We leave the harder college problem open
 - has initial college portfolio choice, and final student choice
 - Lately, early admissions also complicates the college problem

Journal / College Quality is Endogenous

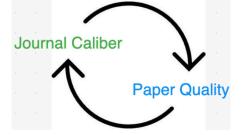
- ▶ There are no absolutely good or bad colleges or journals
 - Alternatively, college qualities are fixed (maybe by faculty) as is their student capacity
 - New journals face this problem all the time
 - Problem: Bad elite colleges can maintain high standards by shrinking enrollment [Chade, Lewis, and Smith (2014) "Student Portfolios and the College Admissions Problem"]
- ► For the purposes of valuing a college or journal:
 - ► A college is only as good as its students.
 - A journal is only as good as its papers

Matching as an Implicit Market

- Broad topic: Matching with incomplete information.
 - Asymmetry: journal qualities are known, paper qualities not
 - ► Complete information: use the deferred acceptance algorithm
- ▶ Journal Acceptance / College Admissions as Implicit Markets
 - ▶ Most elite journal money application fees are roughly similar
 - Acceptance bars and admission standards perform the allocation role of prices, and they adjust (highest for best journals and colleges)
 - ► This paper seeks to understand this market

Steady State Story

- ► All players negligible ⇒ games where journals move first then authors, or all act at once, have identical Bayes Nash equilibria
- Step 1 An endogenous capacity pool of journals indexed by caliber publicize and commit to standards
- Step 2 As a function of his paper quality, each author submits to a single journal, seeking to maximize caliber \times admission chance
 - ► Rational expectations: Acceptance decisions ensure that average acceptance quality equals advertised caliber



Model 1: The Author Knows His Paper Quality

- Continuum Mass of Authors
 - Each has a unique paper with some quality x
 - ▶ Density of paper qualities on $[\underline{x}, \infty)$
- Continuum Mass of Journals
 - ▶ Journal *caliber* is the average quality of accepted papers
 - ► Caliber is \$\$ units: a caliber *v* publication is worth *v* to the author
 - Free entry / exit of journals of any caliber (endogenous players)
 - When journals have market power, this invalidates our competitive logic, and is an open problem.
- ► Information and Actions
 - ▶ Seeing his paper quality, an author picks a journal to submit to
 - Seeing a noisy evaluation signal σ of a submitted paper's quality, a journal chooses whether to accept or reject it
 - Location family noise: quality x paper yields realized signal σ , where σx is atomless with a probability density g.
 - Example: Gaussian noise $g(\sigma x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2\phi^2}(\sigma x)^2}$
 - Other distribution examples: (most) Gamma, exponential, extreme value, logistic, Weibull, and most beta distributions

A Robust Assumption on Signal Noise

- Information economics is prone to striking results that hold for one distribution and not others
 - e.g. main finding cascade finding of herding literature (9000+cites) depended on multinomial signals, and usually fails
 - ► The problem arises when you learn from people's actions
- lacksquare Signal density g is log-concave on $[0,\infty)$ or ${\mathbb R}$
- \Rightarrow No signal is perfectly revealing
 - \Rightarrow every paper has a positive chance at every journal
- ⇒ The density is positive on a connected interval
- ▶ Prekopa: signal cdf *G* is log-concave (and thus continuous)
- \Rightarrow hazard rate $\frac{g(t)}{1-G(t)}$ is increasing.

Journal Motivations

- Rational Expectations Equilibrium: promised caliber is realized
 - 1. Ours is an intuitive long-run steady-state journal reputation
 - 2. Bayesian persuasion sender-receiver story
 - Journals can publicly commit to acceptance standards
 - 3. Mercenary journal story:
 - ▶ Journal *profit* is average accepted paper quality minus caliber
 - Declining (eg predatory) journals reimburse authors for deficit between promised and delivered caliber
 - ▶ There is free entry of any journal that expects to earn profits
 - ▶ We use story 3 in order to quantity payoffs after deviations
- ▶ Journal v accepts when signal $\sigma \ge \theta(v)$, acceptance threshold
 - Accepting papers over the bar is optimal in the short run story

Author Payoffs

- Author's payoff is caliber times acceptance chance
 - We ignore journal application fees.
 - ▶ The opportunity cost (only one submission) is the critical one.
- Quality x paper submitted to a caliber v journal with threshold θ pays

$$(1-G(\theta-x))\cdot v$$

- This subsumes dynamic case with resubmission and discounting when the author cares about (1δ) times this
 - Author resubmits to the same journal.

Distinct Papers are Sent to Distinct Journals in Equilibrium

Lemma

Every author submits to a journal equal to his caliber.

- Rational expectations \Rightarrow suffices to show that no journal v_1 attracts paper qualities $x < v_1$ and $x' > v_1$
- If so, a new journal $v_2 > v_1$ can skim off best papers at v_1
 - Let the new journal promise higher caliber $v_2 \in (v_1, x')$, where x' is indifferent, given the acceptance thresholds θ_1, θ_2 :

$$[1 - G(\theta_2 - x')]v_2 = [1 - G(\theta_1 - x')]v_1 \qquad (\diamondsuit)$$

Then journal v_2 has higher standards than v_1 . For logging (\diamondsuit) : $\log(1-G(\theta_2-x'))-\log(1-G(\theta_1-x'))=\log(v_1/v_2)<0$

► Claim: (♣) has a unique solution
$$\theta_2 > \theta_1$$

- ▶ Proof: $\log[1 G]$ is concave \Rightarrow left side of (♣) continuously weakly falls in θ_2 from 0 at $\theta_2 = \theta_1$, tending to $-\infty$ as $\theta_2 \uparrow \infty$
- Next, all papers x'' > x' prefer journal v_2 , and x'' < x' prefer v_1 .
- ▶ Journal v_2 attracts only papers $x'' \ge x'$, but promises caliber $v_2 < x'$. So it earns profits. Contradiction (given free entry).

Journal Equilibrium

▶ A journal equilibrium is an acceptance threshold function $\theta(v)$ for which it is optimal for every author $x \in [\underline{x}, \infty)$ to submit to the same caliber journal v = x

Proposition (A Unique Equilibrium Exists)

There exists a unique equilibrium.

Existence is an ODE result. More later...

The Worst Journal is not Selective

Lemma

The worst journal has caliber \underline{x} , and accepts all submissions.

▶ Proof: Since we ruled out pooling in equilibrium, the least caliber journal cannot exceed x

If the least journal \underline{x} sometimes rejects, a new journal can enter, always accept, and attract all paper qualities just over $\underline{x} > 0$ (making profits). Contradiction.

Motivation

Equilibrium and Its First Order Condition

Author optimality, given paper of quality x:

$$\max_{v}(1-G(\theta(v)-x))v$$

Unlike with auctions, different authors have the same payoff from a given journal, but produce different signal distributions

Equilibrium and Its First Order Condition

Author optimality, given paper of quality x:

$$\max_{v}(1-G(\theta(v)-x))v$$

- Unlike with auctions, different authors have the same payoff from a given journal, but produce different signal distributions
- ► FOC:

$$(1 - G(\theta(v) - x)) - g(\theta(v) - x)\theta'(v)v = 0$$

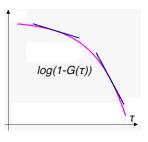
- ► The SOC holds, given log-concavity of G
- ightharpoonup By rational expectations, the FOC holds at quality x = v:

equilibrium FOC
$$\Rightarrow$$
 $\theta'(v) = \frac{1}{v} \cdot \frac{1 - G(\theta(v) - v)}{g(\theta(v) - v)}$

▶ On the right side is the inverse hazard rate of evaluation noise:

Journal Rejection Rate is Hump-Shaped

- ightharpoonup toughness $\tau(v) = \theta(v) v$
- We argue toughness is hump-shaped



acceptance rate
$$\times$$
 caliber
$$= [1 - G(\underbrace{\theta(v) - x}_{\text{toughness}})] \times v$$

- ▶ Optimality: 1% caliber rise is balanced by 1% acceptance fall
- ▶ Log-concavity: 1% falls in $1 G \Rightarrow$ toughness % increases fall
- ▶ Eventually, $\theta(v) \uparrow$ less % than caliber $v \Rightarrow$ toughness falls

Proposition (Hump-Shaped Selectivity)

The equilibrium rejection rate $R(v) = G(\tau(v))$ is hump-shaped in journal caliber v, for all small x > 0

Motivation

Proof of Hump-Shaped Journal Selectivity

Since $\tau(v) = \theta(v) - v$, we can rewrite equilibrium FOC as:

$$\tau'(v) = \theta'(v) - 1 = \frac{1}{v} \frac{1 - G(\tau(v))}{g(\tau(v))} - 1$$
 (*)

- ▶ Idea: $\tau(v)$ is hump-shaped, declining once $\frac{g(\tau(v))}{1-G(\tau(v))} \ge \frac{1}{v}$
- lacktriangle Proof: By log-concavity, the hazard rate rises in au
 - \Rightarrow If $\tau(v)$ is weakly rising, then $\tau'(v)$ is strictly falling, by (\bigstar)
 - \Rightarrow any critical point is a max: $\tau'(v) = 0 \Rightarrow \tau''(v) < 0$
 - ▶ If $\tau(v)$ rises forever, RHS of $(\bigstar) \to -1 < 0$. Contradiction!
- ▶ Finally, (\bigstar) implies that $\tau'(\underline{x}) > 0$ for small enough \underline{x}

Rejection Costs and Caliber

▶ How does *rejection cost* $C(v) = G(\tau(v)) \cdot v$ vary in caliber?

Proposition

Rejection cost is hump-shaped in journal caliber v.

- ▶ Proof: Since toughness rises initially, so do rejection losses
- ▶ Rejection costs fall in *v* once

$$C'(v) = G(\tau(v)) + vg(\tau(v))\tau'(v) < 0 \qquad (5)$$

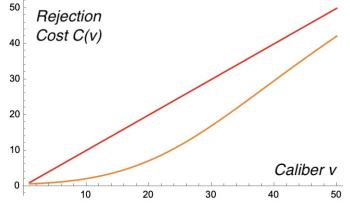
- ▶ Eq'm FOC (★) iff $vg(\tau(v))\tau'(v) = 1 G(\tau(v)) vg(\tau(v))$.
- \Rightarrow Rejection losses fall (\ref{sol}) iff $vg(\tau(v)) > 1$.
- ▶ We claim $vg(\tau(v)) 1$ upcrosses (through 0)
- ▶ Given (★), when $vg(\tau(v)) = 1$, we have:

$$\frac{d}{dv}vg(\tau(v)) = g(\tau(v)) + vg'(\tau(v))\left(\frac{1 - G(\tau(v))}{vg(\tau(v))} - 1\right)$$
$$= g(\tau(v)) - G(\tau(v)g'(\tau(v))/g(\tau(v)) \ge 0$$

 \triangleright ... by log concavity of G. Finally, losses do eventually fall!

Gaussian Example of Rejection Losses

As caliber v rises, rejection costs C(v) — the gap below initially rises and eventually falls



(Gaussian signals with variance 10)

Fully Solved Example with Exponential Referee Noise

• $G(t) = 1 - e^{-\lambda t}$: The equilibrium FOC at interior solution is:

$$\theta'(v) = \frac{1}{v} \cdot \left(\frac{1 - G(\theta(v) - v)}{g(\theta(v) - v)}\right) = \frac{1}{\lambda v} \Rightarrow \theta(v) = \frac{1}{\lambda} \log v + C$$

- ▶ Sure acceptance at journal $\underline{x} \Rightarrow \theta(\underline{x}) = \underline{x}$ and $C = \underline{x} \frac{1}{\lambda} \log \underline{x}$
- \Rightarrow Acceptance threshold $\theta(v) = \underline{x} + \frac{1}{\lambda} \log \frac{v}{\underline{x}}$ provided $\theta(v) > v$
 - $\theta(v) = v \text{ at any journal } v > \overline{v}$
- \Rightarrow Equilibrium rejection rate at interior solution at $v < \bar{v}$ is

$$R(v) = G(\theta(v) - v) = 1 - e^{-\lambda(\theta(v) - v)} = 1 - \frac{X}{v}e^{\lambda(v - \underline{x})}$$

 \Rightarrow Rejection cost at $v < \bar{v}$

$$C(v) = vR(v) = v \left[1 - \frac{x}{v}e^{\lambda(v - \underline{x})}\right] = v - \underline{x}e^{\lambda(v - \underline{x})}$$

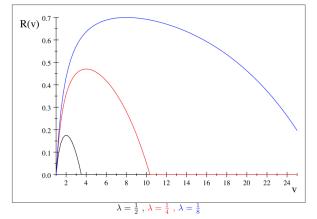
▶ Higher caliber journals $v \ge \bar{v}$ accept everything at zero rejection cost

Fully Solved Example with Exponential Referee Noise

- ► Case 1: Precise signals: $\lambda > 1/\underline{x}$
 - riangleright corner solution $\theta(v) = v$, and zero rejection chance in equilibrium for all paper qualities.
- ▶ Case 2: Noisy signals: $\lambda < 1/\underline{x}$
 - ► A hump shape emerges
- low and high quality refereeing

Increasing Dispersion with Exponential Noise

As Signal Noise Rises, Rejection Rates Rise & Peak Later



Plots assume a worst paper $\underline{x} = 1$.

How Evaluation Noise Impacts Rejection Rates

- Dispersion measures how "spread out" a distribution is
- ▶ G is more dispersed than F $\Leftrightarrow G^{-1}(b) - G^{-1}(a) \ge F^{-1}(b) - F^{-1}(a)$ for any b > a $\Leftrightarrow g(G^{-1}(a)) < f(F^{-1}(a))$ for any $a \in (0,1)$, with a density
- ► For many distributions, e.g. exponential and Gaussian, higher dispersion ← higher variance

Proposition (Increasing Dispersion)

The rejection rate rises and peaks later if G grows more disperse

► Low quality refereeing leads to higher rejection rates

Motivation Authors Possible Occident

Rejection Rate Rises in Evaluation Noise Dispersion

- ► Comparative statics for the rejection use operator methods
- ► Recall the equilibrium FOC

$$\theta'(v) = \frac{1 - G(\tau(v))}{vg(\tau(v))} \qquad (\bigstar)$$

▶ The *rejection rate* $R(v) = G(\tau(v))$ has slope

$$R'(v) = g(\tau(v))\tau'(v)$$

$$= g(\tau(v))[\theta'(v) - 1]$$

$$= \frac{1 - R(v)}{v} - g(G^{-1}(R(v))) \qquad (\spadesuit)$$

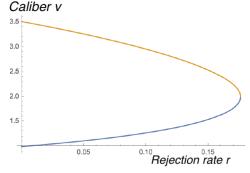
▶ The equilibrium rejection rate is a fixed point of the operator:

$$TR(v) = \int_0^v \left(\frac{1 - R(s)}{s} - g(G^{-1}(R(s)))\right) ds$$

- ► The *T* operator is neither a contraction nor monotone, but is a contraction on small enough intervals.
- ▶ We then paste together the unique fixed points

Comparative Statics via an Inverse Operator

- ▶ For comparative statics, invert R(v) to get V(r)
- As R(v) is hump-shaped, we invert its pre- and post-hump segments the blue curve $V_L(r)$ and orange curve $V_U(r)$



▶ By the Inverse Function Theorem and (♠), we have

$$V'_{L}(r) = \frac{1}{R'(V_{L}(r))} = \frac{V_{L}(r)}{1 - r - V_{L}(r) \cdot g(G^{-1}(r))}$$

Dispersion and the Lower Inverse

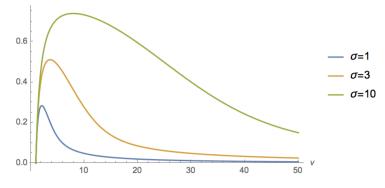
▶ The fixed point $V_L(r)$ of \hat{T} obeys (since $\underline{x} \equiv V(0)$):

$$\hat{T}V_L(r) = \underline{x} + \int_0^r \frac{V_L(s)}{1 - s - V_L(s) \cdot g(G^{-1}(s))} ds$$

- ▶ If G grows more dispersed, the function $g(G^{-1}(s))$ falls
 - \Rightarrow The operator $\hat{\mathcal{T}}$ shifts down
 - \Rightarrow Its fixed point V_L shifts down
 - \Rightarrow Also, orange curve V_U shifts up, meeting V_L at a higher v
 - \Rightarrow Its inverse, the rejection rate R(v), shifts up (and peaks later)

Rejection Rates with Noisier Gaussian Signals

► As Signal Noise Rises, Rejection Rates Rise & Peak Later



What if Authors Do Not Know Paper Quality?

- Authors may be unsure of their paper's quality just as a student may not know how good he is
- Our results should still inform what happens in the stage game, but authors would learn over time

▶ But authors exploit optionality & submit more ambitiously

The Full Model with Incomplete Information

- lacktriangle Journal sees signal σ of paper quality x of any submission
 - $ightharpoonup \sigma x$ has a density $g(\sigma x)$
- lacktriangle Author sees a noisy signal ψ of the quality x of his paper,
 - ψx has a density $h(\psi x)$.
- ▶ Paper quality density f is log-concave on $[\underline{x}, \infty)$ (say $\underline{x} = 1$)
 - Until now, the paper quality distribution was irrelevant for the conclusion, for neither authors nor journals needed Bayes rule
- ► We seek a pure strategy Bayes Nash equilibrium with
 - ightharpoonup higher author types ψ apply more ambitiously
 - ► higher journal types set higher standards
- ightharpoonup A separating equilibrium is (V, θ) , i.e. a smoothly increasing
 - (a) application function $V(\psi)$ yielding author optimality, and
 - (b) acceptance threshold $\theta(v)$ yielding rational expectations.

Journal Equilibrium

- Inverting $V(\psi)$: author signal $\Psi(v)$ submits to caliber v
- ► The density of accepted paper qualities x at journal v:

Authors Know Paper Quality

$$\alpha(x|v) \propto f(x)h(\Psi(v)-x)(1-G(\theta(v)-x))$$

► The *rational expectations* (RE) condition reflects that journals now publish a variety of qualities:

$$\mathsf{RE} \qquad \mathsf{v} = \int_{\mathsf{x}}^{\infty} \mathsf{x} \alpha(\mathsf{x}|\mathsf{v}) \mathsf{d}\mathsf{x}$$

b journal equilibrium (Ψ, θ) obeys RE & author optimality:

FOC*
$$\frac{1}{v\theta'(v)} = \int_{x}^{\infty} \frac{g(\theta(v) - x)}{1 - G(\theta(v) - x)} \alpha(x|v) dx$$

► The integrals reflects how authors don't know their quality *x*, and so journals cannot infer them from application

Equilibrium Rejection Rate

▶ The density of submitted paper qualities x at journal θ

$$\zeta(x|v) \propto f(x)h(\Psi(v)-x)$$

► The equilibrium *rejection rate* is now

$$R(v) = \int_{\underline{x}}^{\infty} \zeta(x|v) G(\theta(v) - x) dx$$

- Higher-caliber journals
 - use higher acceptance thresholds $(\theta \uparrow)$, rejecting any given quality x paper with larger chance $G(\theta(v) x) \uparrow$
 - **P** get submissions from higher author signals $(\Psi \uparrow)$, with a higher paper density ζ (stochastically), clearing the bar more often
- ► The rejection rate is hump-shaped if the first effect dominates at low calibers, the second effect at high calibers

Journal Equilibrium Equations, Reformulated

- equilibrium toughness $\tau(v) \equiv \theta(v) v$ is again the excess of the journal threshold over its caliber
- **▶** author's equilibrium sheepishness $\xi(v) \equiv \Psi(v) v$ is the excess of the author's type over journal caliber
- ▶ Define *caliber-quality gap* $z \equiv v x$
 - lacktriangle the accepted-paper-quality density $lpha_{m{
 u}}$ is

$$\alpha(\mathbf{v}-\mathbf{z}|\mathbf{v}) \propto f(\mathbf{v}-\mathbf{z})h(\xi(\mathbf{v})+\mathbf{z})(1-G(\tau(\mathbf{v})+\mathbf{z}))$$

- f log-concave iff f(v-z) is logsupermodular (LSPM) in (v,z)
- So α is LSPM in (v, z) if sheepishness $\xi(v)$ is decreasing

Journal Equilibrium Equations, Reformulated

- equilibrium toughness $\tau(v) \equiv \theta(v) v$ is again the excess of the journal threshold over its caliber
- ▶ author's equilibrium sheepishness $\xi(v) \equiv \Psi(v) v$ is the excess of the author's type over journal caliber
- ▶ Define *caliber-quality gap* $z \equiv v x$
- lacktriangle the accepted-paper-quality density $lpha_{m{v}}$ is

$$\alpha(\mathbf{v}-\mathbf{z}|\mathbf{v}) \propto f(\mathbf{v}-\mathbf{z})h(\xi(\mathbf{v})+\mathbf{z})(1-G(\tau(\mathbf{v})+\mathbf{z}))$$

- f log-concave iff f(v-z) is logsupermodular (LSPM) in (v,z)
- ▶ So α is LSPM in (v, z) if sheepishness $\xi(v)$ is decreasing
- ▶ Rewrite equilibrium equations (replacing $\theta(v)$ by $\tau(v) + v$) as:

FOC*
$$\frac{1}{v\theta'(v)} = \int_{-\infty}^{v-1} \alpha(v-z|v) \frac{g(\tau(v)+z)}{1-G(\tau(v)+z)} dz$$
RE $0 = \int_{-\infty}^{v-1} \alpha(v-z|v) z dz$

- ► Rational expectations: the average caliber-quality gap is zero
- sheepishness ξ decreasing function $\Rightarrow \alpha$ LSPM \Rightarrow expected caliber-quality gap is positive \Rightarrow RE fails

Questions

1. Equilibrium toughness $\tau(v)$ hump-shaped?

2. Hump-shaped toughness \Rightarrow hump-shaped rejection rates?

Quasiconcave Toughness is Tough

- We prove that any critical point $\tau'(v) = 0$ is a max, i.e. that $\tau'(v) = \theta'(v) 1$ downcrosses through zero
- ▶ i.e. when $\tau'(v) = 0$, the following FOC* formula rises in v:

$$1/\theta'(v) = v \cdot \int_{-\infty}^{v-1} \alpha(v-z|v) \frac{g(\tau(v)+z)}{1-G(\tau(v)+z)}$$

- ▶ This would be easy if $\alpha(v z|v)$ were LSPM in (v, z), since:
 - lacktriangle the hazard rate g/(1-G) increases with z by log-concavity
 - by monotonicity preservation, its mean rises given a LSPM kernel increases with v (Milgrom's (1981) "Good News")
- ▶ But then $\int \alpha(v-z|v)zdz$ also increases, violating RE
- Likewise, $\alpha(v z|v)$ cannot shift upward in FOSD in v (weaker than LSPM)

Decreasingly Log-concave Distributions

 \blacktriangleright We posit f, h are decreasingly log-concave:

$$(\log f)'', (\log h)'' \le 0 \le (\log f)''', (\log h)'''$$

- Examples include most log-concave densities: Gaussian, exponential, uniform, Chi-squared, extreme value, etc.
- Let cdf A(z|v) have density $\alpha(v-z|v)$ in z
- ▶ Decreasingly log concave $\Rightarrow -\frac{\partial}{\partial v}A(z|v)$ is *upcrossing* through zero in z (rather than everywhere positive, as FOSD yields)
- ▶ RE holds: increasing $v \Rightarrow$ mean-preserving spread in A(z|v)
- ► First case: convex hazard rates (e.g. Gaussian)
 - ► Mean-preserving spread raises mean of a convex hazard rate.
 - ▶ So when $\tau'(v) = 0$, the following rises in v

$$1/\theta'(v) = v \cdot \int_{-\infty}^{v-1} \alpha(v - z|v) \frac{g(\tau(v) + z)}{1 - G(\tau(v) + z)}$$

► This proves quasiconcavity of toughness

Quasiconcave Toughness

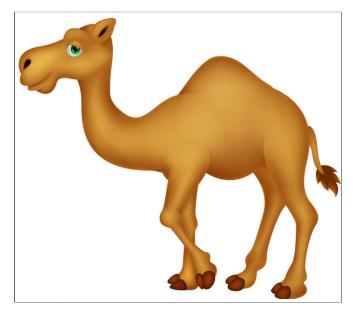
- We exploit richer properties to sweep in other distributions
- ▶ Does quasiconcave toughness ⇒ hump-shaped toughness?
- ► Hump-shaped toughness ⇒ hump-shaped rejection rates?
- With known author types, hump-shaped toughness was necessary and sufficient for a hump-shaped rejection curve, via

$$R(v) \equiv G(\tau(v))$$

Lemma

Equilibrium toughness is hump-shaped if author information is not too dispersed, and otherwise increasing

When do Humps Emerge



Main Findings

Result 1

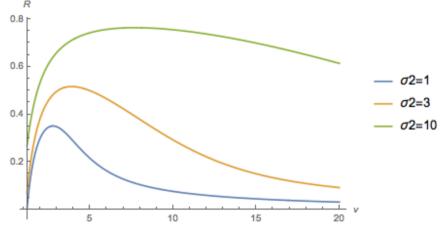
If the author signal is sufficiently less noisy than the journal signal, then the rejection rate R(v) is hump-shaped; otherwise, it is everywhere increasing.

Result 2

The rejection rate rises as the journal OR author signal noise increases.

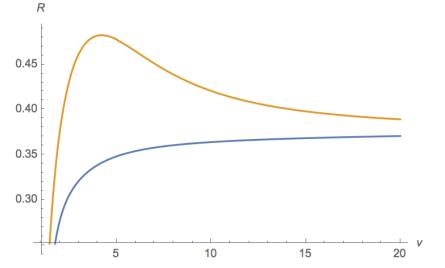
Gaussian Location Signals for Author and Journal

As journal signal noise rises, rejection rates rise & peak later



Assume an improper uniform prior f, standard normal author signal distribution, and journal signal as above.

Humps Emerge with More Precise Author Information



- ▶ both use paper prior $f = \Gamma[2, 1]$, author signal $h = \Gamma[2, 1]$
- ▶ journal signals $g = \Gamma[2,1]$ (blue) and $g = \Gamma[2,2]$ (orange)

Mavi's Sheep

Journal Rejection Rates

Hamermesh (2008), "How to Publish in a Top Journal"

- ▶ QJE 4%, JPE 5%, AER 7%, APSR 8%, JoLE 8%
- ► Econometrica 9%, EER 9%
- Journal of Human Resources 10%, Economica 11%
- ► RAND 11%, REStat 12%, Economics Letters 17%
- ► Canadian Journal of Economics 18%
- ▶ Industrial and Labor Relations Review 18%
- ▶ Journal of Monetary Economics 20%

Authors Know Paper Quality	When Authors Don't Know their Paper Quality
000000000000000000000	00000000000000

Stanford University	CA	5%
Harvard University	MA	5
Columbia University	NY	6
Yale University	СТ	6
Princeton University	NJ	7
California Institute of Technology	CA	8
Massachusetts Institute of Technology	MA	8
University of Chicago	IL	8
Brown University	RI	9
University of Pennsylvania	PA	9