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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING

 By Andrea Wilson1

 Before choosing among two actions with state-dependent payoffs, a Bayesian
 decision-maker with a finite memory sees a sequence of informative signals, ending
 each period with fixed chance. He summarizes information observed with a finite-state
 automaton.

 I characterize the optimal protocol as an equilibrium of a dynamic game of imperfect
 recall; a new player runs each memory state each period. Players act as if maximizing
 expected payoffs in a common finite action decision problem. I characterize equilibrium
 play with many multinomial signals. The optimal protocol rationalizes many behavioral
 phenomena, like "stickiness," salience, confirmation bias, and belief polarization.

 Keywords: Imperfect recall, bounded rationality, multiselves, bounded memory,
 absent-minded, biases.

 1. INTRODUCTION

 This paper develops a SIMPLE MODEL of Bayesian learning with a finite
 memory. A decision-maker (DM) must choose between two actions with state-
 dependent payoffs. Ideally, he wishes to select the low and high actions, respec-
 tively, in the low and high states of the world. Before doing so, he is afforded
 the opportunity to observe a sequence of informative signals, concluding each
 period with a constant termination chance. A standard Bayesian agent would at
 each stage update the current posterior based on the newest signal and thereby
 eventually choose the action with highest expected payoff. By contrast, I ex-
 plore what happens when the DM is constrained by a finite memory capac-
 ity. Specifically, he must summarize all signals so far into one of finitely many
 memory states, or information sets. He must optimally coarsen Bayes rule into
 a finite transition rule that specifies precisely how he will update his memory
 state in response to new information.

 Formulating this as a decision problem naturally leads one to ponder an
 "absent-minded" decision-maker with imperfect recall of the past. Piccione
 and Rubinstein (1997) explored this strategic notion in a simple context, think-
 ing of it as a dynamic game of "multiselves." I adapt their strategic formulation
 to my infinite horizon problem, and then explore the role of incentive condi-
 tions and optimal beliefs.

 This paper characterizes the optimal memory protocol for this context; specif-
 ically, a triple of an initial memory state, a decision rule should the game end in

 lrThis is a radical revision of my job market paper that I presented on the 2003 Review of
 Economic Studies Tour. I am indebted to Wolfgang Pesendorfer for extremely valuable guidance
 and advice throughout this project. I also thank Faruk Gul for his help in developing some ideas
 in the paper, and Ariel Rubinstein, the initial and final co-editors, five anonymous referees of
 this journal, and many seminar participants for useful comments. Throughout this editing, I have
 profited from the continued support of senior colleagues as well as my wonderful dog Mavi.

 © 2014 The Econometric Society DOI: 10.3982/ECTA12188
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 2258 ANDREA WILSON

 the current memory state, and a transition rule. But motivated by the absent-
 mindedness link, I immediately pursue a strategic reformulation. I assume that
 each memory state is run by a separate player (or "self") each period, and that
 he enjoys a two-dimensional action space - decision and transition rules. Using
 methods from Markov chains on directed graphs to adapt the posterior belief
 construction of Piccione and Rubinstein to my infinite horizon setting, I de-
 velop a team equilibrium notion. I then argue in Proposition 1 that the DM's
 optimal plan is a team equilibrium. Yet in the spirit of a few other dynamic
 games with a coordination flavor, the converse fails, as not all team equilibria
 yield optimal plans for the decision-maker.
 I next turn to a few key results that are valid for all memory protocols and

 signal distributions. In the spirit of mechanism design, Lemma 1 argues that in-
 centive compatibility alone - namely, that no self can profit from fully mimick-
 ing another's strategy - implies that the proportional payoff gains from shifting
 to higher memory states must fall. Proposition 2 then leverages this to produce
 a simple characterization of how selves behave. Namely, each memory state is
 mapped onto a distinct interval of beliefs, and each self - after observing the
 signal - transitions to the state whose corresponding interval contains his pos-
 terior. Intuitively, the selves solve an optimal encoding problem, aware that no
 one later learns of their signal draw.
 Next, restricting to my multinomial signals, I address whether all memory

 states are hit with positive probability in equilibrium. This requires that signals
 not be too asymmetric, and/or that the termination chance not be too large.
 Under an even stronger condition, I show in Lemma 2 that no memory state
 is absorbing and, thus, new signals can forever impact the memory state. Next,
 Proposition 3 derives limits on how well the DM does. Naturally, his payoff im-
 proves with a larger expected number of signals, but less obviously, I show that
 payoffs are forever strictly bounded below the unconstrained Bayesian full in-
 formation payoff. This gap vanishes as the number of memory states explodes
 or any signal realization becomes perfectly informative. This underscores that
 the finite memory capacity in and of itself limits information accumulation, and
 cannot be circumvented by sufficiently many private signals.
 My paper finally turns to the characterization of the optimal memory proto-

 col with a vanishing termination chance, that is, an exploding expected number
 of signals. Proposition 4 then nearly fully characterizes the resulting decision
 and transition strategies. A key feature that emerges is that with enough sig-
 nals, the optimal belief thresholds separating memory states spread apart: Only
 the two most extreme signal realizations are strong enough to push the DM out
 of his current state, and no observation is informative enough to push the DM
 past an adjacent state. Thus, the DM probabilistically shifts up or down by
 exactly one state after the two most powerful opposing signal realizations, and
 disregards all other observations. This speaks to the role of salience in learning,
 because nonextreme signals simply do not matter. In the limit with a vanishing
 termination chance (Corollary 3), the highest and lowest signals each leave the
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2259

 DM precisely indifferent about switching memory states. Extremal memory
 states also play a special role. When maximally convinced of either high or low
 states of the world, the DM exhibits much inertia: He reacts to the strongest
 signal opposing his current belief with a probability vanishing as the square
 root of the termination chance.

 Proposition 4 also offers a simple foundation for fluid versus sticky be-
 havior - namely, whether the DM either always reacts to new extreme signals
 or only sometimes does. First of all, discussed in Section 6, Proposition 4 illus-
 trates a confirmation bias : When the DM entertains a strong prior bias in favor
 of one state of the world, transitions in the opposite direction are sticky in some
 interior states. For a different perspective, observe how this updating behav-
 ior embodies belief polarization: Two individuals with different prior views may
 optimally move in opposite directions upon seeing the same information, each
 growing more convinced that his prior view is correct. Next, the stickiness in
 the extremal states implies that the order in which signals are seen is pivotal
 and, in particular, first impressions matter. If the DM initially sees enough high
 signals to reach his highest memory state, he will ignore a subsequent sequence
 of low signals with high probability, whereas if he had instead started out with
 a sequence of low signals, he might have reached his lowest state and disre-
 garded the subsequent high signals. By contrast, standard Bayesian updating is
 obviously commutative in the observations. The optimal protocol also mimics
 a simpler bounded rationality in which the DM acts as if he could only remem-
 ber a finite number of supporting facts. His beliefs adjust up or down as if he
 were mechanically replacing a previously stored opposing signal with the latest
 one.

 Given the coarse way that past information can be stored, my paper reflects
 several themes of the longstanding informational herding model. For instance,
 the famous finding of incorrect herds with bounded likelihood ratios corre-
 sponds to my positive chance of incomplete learning with such signals. But
 unlike their setting, here one revealing extreme likelihood ratio leads to full
 learning in both states. And just as bad herds persist even with forward-looking
 behavior, so too here is full learning not approached even with enough signals.
 Technically, my finite memory states offer a simpler history summary, but my
 transition rule embeds a harder forward-looking optimization.

 Hellman and Cover (1970) were the first to model learning with finitely many
 memory states. They assumed an unbounded number of signals, pursuing an
 approximate solution to the special question of estimating the correct state of
 the world. By contrast, I analyze the standard binary action decision problem,
 and reformulate it as an infinite dynamic game of imperfect recall. / charac-
 terize optimal play in all memory states for any signal distribution and any ter-
 mination chance. I also derive sharper results for the limit model with a small
 termination chance and show that it captures many well known behavioral phe-
 nomena.
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 2260 ANDREA WILSON

 2. THE MODEL OF A LONG-LIVED DECISION-MAKER

 A single infinitely-lived decision-maker (DM) is uncertain of the true state
 of the world 6, fixed for all time at either H or L. He must eventually choose
 a once-and-for-all action, either 1 or 0. The DM wishes to match the action
 to the state: the low action 0 is a safe action, yielding zero payoff in both
 states, and the high action 1 is a risky action paying tth > 0 in state 6 = H and
 ttl < 0 in state 6 = L. Call the indifference likelihood ratio t* = 'ttl/tth'. Ex
 ante, the DM assigns probability p0 to true state H and, thus, the full informa-
 tion payoff is p0irH . Further define the prior likelihood ratio £0 = p0/(l - Po)-
 Without loss of generality (WLOG), we assume throughout that the prior bias
 ß = ¿07th /'ttl' satisfies ß > 1, so that the risky action is a priori optimal, yield-
 ing myopic payoff pair11 + (1 - Pq)ttl > 0.

 A process of imperfectly informative independent and identically distributed
 (i.i.d.) signals ends each period with termination chance r¡ > 0. In true state 6,
 the signal realization is s e {1, 2, . . . , 5} = «S with chance /jl6s.2 The DM knows
 the termination chance tj and the probabilities ¡xes. Signal are labeled such that
 their likelihood ratios £(s) ee are increasing in 5, 3 so that higher real-
 izations provide stronger evidence in favor of state H. I also make a standard
 full-support assumption that no signal is perfectly informative, so that ¡xes > 0
 for all í € S and 6 e {H, L}; otherwise the model trivializes.

 The DM cannot keep track of all of the information he receives. He has a
 finite set of available memory states, A4 = {1, 2, ... , M }, and chooses an initial
 chance g ? of starting in each state i e M.,4 a decision rule d, which specifies the
 action choice d¡ e {0, 1} if the problem terminates in memory state i e M,5 and
 a transition rule a: Mx. S -» A(M), which specifies the (possibly randomized)
 transition between memory states as new information is received.6 The DM
 wishes to design a protocol (g°, a, d) to maximize his expected payoff.7

 The timing is as follows: at the start of a period, the DM learns whether the
 information process has ended. If it has, he chooses an action according to his
 decision rule d; if it has not, he observes the signal and updates his memory
 according to the transition rule cr.

 2For simplicity, I shall loosely refer to the signal realizations simply as signals.
 3 For beliefs about the true state of world 0, the information set is parenthesized. For 6-

 contingent chances of reaching (or payoffs starting in) a particular information set, the infor-
 mation set is a subscript and 6 is a superscript.

 4The mixture distribution g° e A(Af) is typically a point mass on one state.
 5 1 could allow mixed action choices, with dļ e [0, 1] denoting the probability of choosing action

 1 in memory state i. But since the payoff is linear in d¿ (see (3)), it is clear that randomized actions
 can never help the DM.

 6That the DM updates his memory after each signal is WLOG. If, for example, he can freely
 record two signals at a time, then all results go through, redefining the signal space S as the set
 of pairs of signal realizations.

 7I will suppress the functional dependence on the protocol (g°, cr, d ) throughout the paper.
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2261

 That cr is stationary is an essential assumption; namely, the DM must follow
 the same transition rule every time he is in memory state i. For example, if the
 DM could condition his transition rule on the number of observed signals, then
 he could discriminate between infinitely many histories. But this would entirely
 circumvent the finite memory restriction.

 3. PRELIMINARY ANALYSIS AND A STRATEGIC REFORMULATION

 Let a- j be the chance that the DM moves from memory state i to j if he
 sees signal realization s. I shall denote crf j > 0 more simply by i -*s j. Let
 r?. = (1 - 17) be the probability that the DM observes a signal
 and then moves from memory state i to j, given the true state of the world
 6 e { H , L}.8 Conditional on 6 e [H, L }, the probability that the DM will be in
 memory state i € M when the information process terminates is given by the
 terminal probability

 OO

 a) f^j^va-vYgî'1,
 t= 0

 where gf'1 is the probability of memory state i e M in true state 0 after t sig-
 nal observations. Appendix A.2 derives these distributions, and proves that the
 terminal distribution f9 = is precisely the steady-state distribution of
 the following perturbed Markov process.9 With chance 17, transitions are gov-
 erned by the initial distribution g°, namely jumping to memory state i with
 chance g°; with the remaining chance 1 - 17, transitions follow a. Defining

 j- = 77 gl + ( as this perturbed transition chance from j to i, f° obeys the
 system of steady-state equations10

 (2) // = £/>;,< yieM-
 jzM

 8The transition probabilities out of any state ( Ttj) sum to (1 - 17); the problem terminates
 with chance 17.

 9The proof simply calculates the infinite sum in (1), obtaining fe = 17g0 4- (1 - y)Tdfd , where

 T is the matrix of transition chances specified by the DM, and then uses rjg0 = ffvg0 (prob-
 abilities sum to 1) to writ e f 6 as the steady-state distribution of this perturbed Markov process.

 10Following Freidlin and Wentzell (1984), the solutions f? to this system of steady-state equa-

 tions can be written as f f = yf / Ylf=i where yf is the 0-contingent probability of a "path"
 (connected acyclic graph) ending in state j. More precisely, define a j-tree as a directed graph
 on M with no closed loops and such that each state i j has a unique successor k, indicated
 by i -► k. To calculate the path chance y?, take the sum, over all y -trees, of the product of the
 transition probabilities cjdik along the tree. For further explanation, see Kandori, Mailath, and
 Rob (1993).
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 2262 ANDREA WILSON

 Since the DM makes his decision in memory state i e M. with probability
 ff when the true state of the world is 6, whereupon the payoff is d,Tre, his
 expected payoff is given by

 M M

 (3) PoiT^^ffdi + íl-
 ť=i i=i

 Appendix A.1 proves that the problem of maximizing this objective is isomor-
 phic to a repeated memory constrained decision problem with flow payoffs
 rather than a terminal payoff.
 A protocol (g°, cr, d) maximizing (3) is optimal. For any memory size M < oo
 and termination chance 17, let II* (M, 17) be the DM's value, that is, his ex-
 pected payoff following an optimal protocol. The DM's objective is to choose
 transition chances and thereby via (1) to choose the optimal long-run distri-
 bution f9, subject to the constraint that he move from memory state i to j
 with chance at least r/g" after any signal observation. Since by (2) and (3),
 the expected payoff is continuous in a and 17 when 17 > 0, the DM maxi-
 mizes a continuous objective function over a compact constraint set; an op-
 timal memory therefore exists. By continuity of II in 17, Berge's theorem
 of the maximum asserts upper hemicontinuity in 17 of the space of optimal
 protocols and continuity of the value tj) in 17. Since the DM can se-
 cure the myopic payoff p<¡tth + (1 - Pq)ttl by ignoring information, we have
 n*(M, 17) > poirH + (1 - Po)ttl. Information matters when this inequality is
 strict.11

 It will also be convenient to calculate the DM's beliefs and expected con-
 tinuation payoffs in each memory state. I assume that the DM is Bayesian: he
 believes that if the true state of the world were 6, then he would have reached
 memory state i e M after t signal observations with probability gf'', and so
 the prospective chance f? in (1) of ending in memory state i € M. is also the
 probability with which the DM believes he would reach memory state i e M. in
 any (unknown) period.12 Then by Bayes' rule, letting p(i) denote his updated
 belief that H is the true state conditional on memory state i, and letting p(i, s )
 denote the posterior if he additionally observes signal realization s in memory

 "Define = maxj.es(i7 + (l-rj) J2S>S- ß")Kv + (l-i?) Es>s. /4)- I show in Appendix D
 in the Supplemental Material (Wilson (2014)) that information matters if and only if ß <
 («îl)/«!))*"1.

 12This posterior belief assignation rule adapts the consistency notion of Piccione and Rubin-
 stein (1997) for an infinite horizon setting: It assumes that the DM assigns chance 17(1 - 17) ř to
 the event that he has observed t signal realizations so far. To understand this assumption, it may
 be helpful to think of the decision problem as "resetting" every time the information process
 terminates; then, since the problem resets with probability 17 each period, the chance that it last
 reset t periods ago is equal to 17(1 - 17 Y .
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2263

 state i, we have

 <4) p(i) = Pofř+ a'- and

 pU's)= Pofrrf +fh-p°)fW

 This yields the likelihood ratios ¿(i) = p(i)/( 1 - p(i)) = ¿off1 /ft and £(i, s ) =
 €(i)Í(Í).

 Let v? denote the DM's expected continuation payoff starting in memory
 state i € M, given true state of the world 6 e {H, L}. These obey the recursive
 system of equations

 (5) v* = T )TTedi + Y" Tt.iv f V/ € M. and for 6 = H,L.
 jeM

 Let us now re-envision the DM's problem as an equilibrium outcome of a
 dynamic game. When the DM chooses an action or a transition, he knows only
 his current memory state; he can infer the set of possible histories, but cannot
 recall precisely which history occurred. He knows that any deviations today
 from the plan ( g° , a, d ) will not be later recalled and so cannot influence fu-
 ture behavior. I thus formulate this decision problem with imperfect recall as a
 dynamic game played by infinitely many selves, each controlling the transitions
 and decisions at only one memory state in one period, and taking all future
 and past behavior as given. For this game, define a team equilibrium as a tuple
 ((g°, a, d), (vf), (p(i))) satisfying the following three conditions.

 (i) If the DM moves from memory state i to j after signal realization s, then

 the new memory state j maximizes his expected continuation payoff p{i,s)vf +
 (1 -p(i,s))vf.

 (ii) For all memory states i € Ai, the decision rule d¡ maximizes d,(p( i) tí" +
 (1-^(0)^)-

 (iii) Continuation payoffs (vf) and beliefs ( p(i )) are induced by (g°, a, d) via
 (4) and (5).
 Conditions (i) and (ii) define an incentive compatibility notion respecting the
 finite-state measurability and so require that there be no profitable (one-shot)
 deviations from (g°, cr, d).

 Proposition 1: If ( g°,a,d ) maximizes (3), ((g°,a,d),(vf),(p(i))) is a
 team equilibrium.

 This result - true for all signal distributions - is proved in Section A.4. It
 implies that the search for an optimal protocol (g°, a, d ) is equivalent to the
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 2264 ANDREA WILSON

 search for a payoff-maximizing team equilibrium.13 Its converse fails. 14 There
 is a trivial equilibrium in which the transition rule a specifies always (in all
 states, after all observations) moving to each memory state with equal proba-
 bility. This renders all memory states completely uninformative, with identical
 continuation payoffs.
 Either Proposition 1 or, more simply, condition (i) has the following useful

 implication.

 COROLLARY 1 - Revelation Principle (RP): In all memory states i € M hit
 with positive probability, no self thinks he can gain by mimicking the strategy of

 any other self, i e arg maxye ^ (p(i)v" + (1 - p(i))vf).

 This corollary is so labeled as it has the flavor of the revelation principle, in-
 sofar as each memory state ("type") wishes to choose the action and transitions
 designated for his state.

 4. GENERAL PROPERTIES OF AN OPTIMAL MEMORY

 Label the memory states in M with p(i) weakly increasing in i: higher mem-
 ory states assign (weakly) higher probabilities to true state H . So the DM is
 most strongly convinced of the true state of the world L in memory state 1 and
 most strongly convinced of H in memory state M . I call memory states 1 and
 M the extremal states, and call states in M ' {1, M] the interior states.

 Call two memory states equivalent if they yield the same continuation pay-
 offs: vf - v9j = 0 for 6 = H , L. Easily, if memory states i, j are equivalent, then
 the DM could earn the same payoff with a modified rule (g°, cr, d) that never
 uses memory state ;.15 For ease of exposition, I therefore restrict attention to
 optimal protocols in which no two memory states are equivalent. In equation
 (7) below, I will provide a condition under which equivalent or unused memory
 states are strictly suboptimal.

 Lemma 1 derives monotonicity properties on the memory state values. Let

 Aejj = v9j - vf be the payoff differential of memory state j over i in true state 6. So

 A? ¡ = -Afj. The next three results are general findings for any optimal mem-
 ory, irrespective of the signal distribution.

 13This "second welfare theorem," shown in Section A.4, is a feature of common interest games.
 Crawford and Haller (1990) is an early example of this decentralization for a common interest
 game.

 14This failure of the converse is familiar in team theory contexts; the classic reference is Radner
 (1962).

 15 Namely, obtain g° from g° by moving any initial probability of memory state j onto memory
 state i, and obtain a from a by moving all transitions into memory state j over to memory state i.
 An easy calculation yields fj1 = ff - 0, so that memory state j is never used, and continuation
 payoffs are unchanged.
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2265

 LEMMA 1 - Payoff Monotonicity: Fix an optimal protocol (g°, cr, d).
 (a) Higher memory states are better in state H and worse in state L : A"¡ > 0 >

 AU¡forj>i.
 (b) Gains proportionately decline in the memory state: A"¡/Afj > Aļj/Afk if

 i <j < k.

 Proof: Take memory states i < j, that is, p(i) < p(j). By optimality of
 (g°, a, d) and Corollary 1, the DM prefers memory state j to i at belief p{j),
 and prefers i to j at belief p(i). Incentive conditions are

 (6) p{j)A% + (1 - p(j))Afti > 0 > p(i)Al + (1 - p(i))A%.

 Adding yields (p(j) - p(i))(Afi - Afß > 0. So Af¿ > Af¡ if p(j) > p{i), while
 if p{i) = p(j), we can order states so that this inequality holds. But Aeh¡ 0 for
 some 6 e {H, L], as we have ruled out equivalent states. Then A"t and A^¡ are
 not both weakly negative by the first inequality in (6) or both weakly positive
 by the second inequality in (6). Since Afti > ALhl, this implies (a). For (b), take
 memory states i < j < k. Use (a) to rewrite the left-hand side (LHS) of (6) as
 ¿(^(Afi/Afj) > 1 and the right-hand side (RHS) of (6) (replacing i,j by j, k)
 as i(j)(A"-/ Ajk) < 1. Q.E.D.
 I now reformulate the choice facing a self at a memory state in terms of

 posterior beliefs. The action choice d¡ € {0, 1} is straightforward, but the tran-
 sition choice problem is less obvious. Define the indifference likelihood ratio
 i¡ = A'i+X/A"+ u as the belief likelihood that leaves any self indifferent between
 memory states i + 1 and i. We next argue that a standard finite decision prob-
 lem is induced, with the DM choosing higher memory states for higher likeli-
 hood ratios, given the proportionately falling gains to choosing action 1 versus
 action 0.

 Proposition 2 - Optimal Transitions: There are cutoffs 0 < Ł i < t2 < • • • <
 ¿M-i < oo so that a self transitions to memory state i if and only if (iff) his posterior
 likelihood ratio Í lies in [€,_i, ¿,1.

 Proof: Having arrived at a posterior likelihood i, a self prefers memory
 state í + 1 to i iff he expects a higher continuation payoff in state i + 1, that is,
 when IA"+ u > A[i+V By Lemma 1(a), this happens if and only if i > ¿¡, and by
 Lemma l(b)_with j = i + 1 and k = i + 2, the indifference likelihood ratios are
 monotone: i¡ < l,+'. So a self prefers memory state i to other memory states
 if his posterior likelihood lies in his transitions follow, by Proposi-
 tion 1. Q.E.D.

 The DM entertains a prior belief p0 before entering this memory protocol.
 Later, however, all selves are endowed with priors by the protocol; by Corol-
 lary 1, they obey the following corollary.

This content downloaded from 
������������69.130.243.174 on Wed, 30 Mar 2022 03:01:35 UTC������������� 

All use subject to https://about.jstor.org/terms



 2266 ANDREA WILSON

 COROLLARY 2 - Bayesian Rational Prior Beliefs: Before seeing a signal, the
 likelihood ratio i(i) of the self in memory state i obeys £,_i < i(i) < t¡.

 In light of these corollaries, no self ever "misinterprets" evidence of one
 true state as favoring the alternative. If the state i self sees a signal realization
 favoring true state H, that is, with £(s) > 1, then his posterior rises to ¿(i, s) >
 ¿(i). His likelihood ratio then strictly exceeds £,_i, the largest cutoff for moving
 to a state below i. So he either ignores the signal s or moves up. Symmetrically,
 a self who sees evidence in favor of true state L either ignores it or moves
 down.

 Proposition 2 greatly simplifies the problem in some cases: equilibrium is fully
 characterized, by a belief vector in RM_1 with continuous signal distributions. But
 I have assumed multinomial signals, requiring mixed strategies. I now restrict
 focus to this signal class. Under inequality (7), the DM's expected payoff is
 strictly increasing in M (see Appendix B in the Supplemental Material); thus,
 equivalent memory states are not optimal, and all are optimally employed, so
 all selves obtain with positive chance:

 (7) Ps (v + (1 - ~ ^ Ms ~ ^ vk ÍV + (1 - V)l¿% '
 Ms ' V + (! - V)t*i ) ~ ^ tĄ PLs ~ ^ V V + (1 - V)t*s /

 This sandwich inequality on the likelihood ratio product £(1)£(S) holds for
 T / near zero, or when the likelihood ratios of the extreme signal realizations 1
 and S are not too asymmetric. I defer an intuition for it until I present a related
 inequality (8) below. If (7) fails, then there are priors and memory sizes M for
 which the DM could not improve his payoff with just one extra memory state.16
 Call memory state i e M. absorbing if the DM either stays in state i or moves

 to an equivalent absorbing state, after all signal realizations. We next explore
 whether absorbing memory states can be optimal. To this end, say that there
 are no dominant signals whenever

 (gs Tļ + (l-T7)/tf /¿f fl% < t? + (1-T?)^
 77 + (1 - 17)^4 ¡Ą /4 < 17 + (1 - 1 l)Ps

 This implies inequality (7), and so equivalent memory states are not optimal
 given no dominant signals. As seen in Appendix A.3, the first inequality in (8)
 guarantees that signal realization S is sometimes strong enough to push the
 DM out of memory state 1 and thus absorption in memory state 1 is not opti-
 mal. The second inequality likewise precludes absorption in memory state M.

 16This is trivially the case if the prior bias ß violates the "information matters" condition with
 M + 1 memory states, but can occur even when information matters; see Appendix B in the
 Supplemental Material for an example with both absorbing and equivalent states.
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2267

 For an intuition, consider a binary signal, /tf + /¿| = 1. Then the first inequality
 in (8) becomes

 1 < f1" Ps 1 - (1 - T?)/4 _ Pi ÍVs + (! - )2 + • ' '
 Pk Vs ' + Cl - I7)(alÍ)2 H

 The final RHS term is the posterior belief (likelihood) adjustment for a DM
 who believes that he has seen 5-signals in every period until termination. This is
 the strongest possible evidence in favor of true state H. If it cannot overwhelm
 an initial 1 -signal, then the latter is a dominant signal: a DM who initially sees
 a 1-signal will always believe that the evidence favors true state L, and so ab-
 sorption in memory state 1 could optimally occur for some priors. Conversely:

 Lemma 2 - Absorbing Memory States: If information matters and there are
 no dominant signals, that is, (8) holds, then there are no absorbing memory states
 in an optimal memory.

 For an instructive contrast, consider the informational herding model. Like
 this finite memory world, private signals in that well explored setting are ob-
 servationally filtered in every period through a finite mesh - in Smith and
 S0rensen's (2000) case, via the observation of one of finitely many actions.
 Like here, a different decision-maker acts each period, unaware of previously
 viewed signals. Unlike here, their decision-makers can see the entire action his-
 tory. And like Bikhchandani, Hirshleifer, and Welch (1992), I assume multino-
 mial private signals. But they conclude that "cascades" obtain, namely, where
 additional signals are ignored. On the other hand, absorbing states are never
 optimal for small 17 - the proper parallel to the social learning setting with an
 infinite number of agents. The logic is that a Markov process eventually lands
 in the set of absorbing states. This renders useless the multitude of additional
 signals that would arise with vanishing termination chance tj.17
 We next bound equilibrium payoffs. A rational Bayesian almost surely learns
 the true state in the limit 17 ->■ 0 and so secures the full information pay-
 off Poth. My DM earns strictly less than this, by an amount depending on
 the prior bias ß = ¿0tth /'irL' and the information quality 1/p* = ÀM_1, where
 À = f(5)/£(l) > 1 is the quotient of the extreme likelihood ratios favoring
 state H. So 1/p* is the relevant measure of the information quality afforded
 the agent: As either the signal informativeness or M explodes, so does 1/p*,
 and the maximized expected payoff tends to the full information payoff. If in-
 formation matters, then p* < 1//3.18

 "One might think this is due to the forward-looking character of my agent. In fact, Smith,
 S0rensen, and Tian (2012) show that cascades remain possible even when a very patient social
 planner makes action choices.
 18This follows immediately from the condition in footnote 11, noting that f (r;) < £(S) V17, with

 lim^o (Iii?)/«!))*"1 = AM-' = 1/p*.
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 2268 ANDREA WILSON

 PROPOSITION 3 - A Payoff Upper Bound: If p* > 1 / /3, then the DM earns the
 myopic payoff p^tt" + (1 - p0)iTL.If p* < 1/ß and if information matters, then
 II* (M, tj) is strictly falling in the termination chance tj, and its supremum and
 limit as tj - > 0 is

 (9) W = limiJ'Cq, M) = p0irH ■ ū ~ .
 i - P

 Hellman and Cover (1970) derived a similar bound,19 while exploring the
 optimal design of an automaton to distinguish between two hypotheses after
 an infinite sequence of signals; I discuss their result in more detail after Propo-
 sition 4.

 As the transition chance 17 vanishes, the payoff upper bound II* {M, tj)
 increases in the information quality 1 /p*. Learning is complete as 1/p* ex-
 plodes, for instance, as the signal becomes perfectly informative of either state
 (£(1) ļ 0 or Š(S) t 00). For a useful contrast to the informational herding lit-
 erature, note that if either likelihood ratio explodes, learning is complete in
 both states. By contrast, in Smith and S0rensen (2000), when the support of
 the likelihood ratio density is boundedly positive but not boundedly finite (or
 conversely), there is incomplete learning in the low state (or high state). This
 holds even though the action history is observed in their setting but hidden in
 mine, which frustrates learning in my setting.
 To understand the difference, consider an example with two memory states,

 representing the low action and the high action. Assume there is a nearly per-
 fect signal for the high state, observed with chance e near zero in the low state,
 but no such signal for the low state. In Smith and S0rensen (2000), the thresh-
 old i for switching from the high to the low action is exogenously specified:
 thus, if I is very low and if current beliefs (mistakenly) indicate the high state
 strongly enough, there may be no private signal strong enough to shift pos-
 teriors below I. Thus, even in the low state of the world, public beliefs may
 converge to a bad cascade on the high action. My model, in contrast, has en-
 dogenously chosen thresholds. As thejnformativeness of the high signal ex-
 plodes, so does the optimal threshold i: if the DM anticipates being reluctant
 to switch out of the high action, he is correspondingly more careful about tak-
 ing it inthe first place, which in turn makes it easier to for his posterior to drop
 below L In particular, by switching from the high action to the low action with
 a probability that is very small, but large compared to e, the DM can guarantee
 ending up at the right action with chance near 1.

 19Since they assume a continuous signal, their payoff bound replaces fi and is with inf

 and sup where PH and P' are the conditional probability measures, and inf and sup are
 over measurable sets A.
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2269

 5. OPTIMAL PROTOCOLS WITH LOW TERMINATION CHANCES

 I next flesh out some crucial aspects of the optimal protocol with small ter-
 mination chances. Among other things, we will see that only extreme signals
 matter and that the transition rule only takes unit steps.20 Along with our find-
 ing in Corollary 1 that the DM can only move up (or down) after evidence in
 favor of true state H (or L), it then follows that he moves up by at most one
 state after signal realization S, down by at most one state after signal realiza-
 tion 1, and remains in his current memory state in all other cases. We need
 only determine the optimal transition chances. We find that transitions out of
 the extreme memory states 1 and M are very rare when the termination proba-
 bility is small, while transitions in the interior memory states are deterministic,
 except to balance out asymmetries in either the prior bias or the signal.

 To describe the optimal rule, define two critical cutoff memory states: the
 DM's initial state i0, obeying €,0_i < £0 < €,0, and the lowest memory state i* to
 choose action 1, satisfying < I* < In other words, the DM starts in the
 memory state i0 yielding the highest continuation payoff for prior likelihood
 ratio I o , while i* is the lowest memory state with a belief above the threshold
 i* to prefer action 1 (by Corollary 1). Appendix A.8 reveals that if information
 matters, then

 (10) r. L 2 ^ M 2 + l + logyß_l^|(£) L 2 logA 2 + logA logA J
 Observe that both i0 and i* move closer to the middle memory state as the
 signal grows more informative (so that A increases), while an increase in the
 prior bias ß - indicating a stronger prior in favor of H - pushes i* further be-
 low the midpoint and pushes i0 further above. My assumed prior bias ß > 1
 implies that generally i* < i0; define I* = {/*, i* + 1, . . . , /0}. Also note that
 ß < 1/p* = AM_1. Then i* > 2. In Supplemental Material Appendix C (see be-
 low equation (C.8)), I construct a related interior set of states I that depends
 on the asymmetry between signals 1 and S.21

 Call transitions in memory state i sticky up if cr?i+1 < 1, sticky down if
 o'l¡_l < 1, and fluid up (or down) if not sticky up (not sticky down). Call signal

 20 In Appendix E in the Supplemental Material, I offer a fully solved three-state example with a
 symmetric signal and general termination chance r¡ e (0, 1). The example shows how team equi-
 libria are constructed, indicates how small 17 must be to ignore intermediate signals, and shows
 that some features of the optimal protocol described in Proposition 4 persist even for larger val-
 ues of 77: namely, transitions out of the extremal states are always sticky, and the DM never jumps
 between states 1 and 3. The example also demonstrates the impossibility of a converse to Propo-
 sition 1 by showing that while there is an asymptotically efficient symmetric team equilibrium, it
 is Pareto-dominated by an asymmetric memory protocol.

 21 The final section of the Supplemental Material shows that for symmetric signals, / 2 {i* + 1,
 . . . , ř0 - 1}. As signal 1 grows weaker compared to S , the set I typically expands.
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 2270 ANDREA WILSON

 S a geometrically more rare signal 1 if ¡x" ¿u,¿ < /-if . This holds for symmet-
 ric signals, with ¡i f = F°r a binary signal, with iĄ + ¡xes = 1, it asserts
 that signal S more strongly indicates state H than signal 1 indicates state L.22
 The Supplemental Material example exhibits sticky transitions into the middle
 state.

 PROPOSITION 4 - Optimal Protocols: Fix a memory size M and memory ra-
 tio r* < 1/ß. There exists rj* > 0 such that when 77 € (0, 17*), the DM begins in
 memory state i0.Also, the following statements hold :

 (a) Only extreme signals matter. In all memory states i € M., the DM reacts
 only to signal realizations s = 1 , S and remains in memory state i after any signal
 seS'{l,S).

 (b) No jumps : In all memory states i e A4, the DM either stays in i or moves
 up one state after signal realization s = S, and stays or moves down one state after
 s - 1.

 (c) No interior memory state is both sticky up and sticky down, and interior
 transition chances are bounded away from zero as 77 -» 0. If signal S is geometri-
 cally more rare than signal 1, then all interior states are fluid up, all interior states

 outside I are fluid down, and all interior states in I are sticky down. If signal 1 is
 geometrically more rare than signal S, then interior states outside of I* are fluid
 down.

 (d) Let (g°v, crv,dv) bea sequence of optimal protocols with 17 -> 0. If M > 3,
 then the transition chances out of extreme memory states 1 and M vanish at a
 rate asymptotic to while transition chances in the interior memory states are
 bounded away from 0.

 Recall the convention that higher memory states correspond to higher poste-
 riors in favor of the true state H. Parts (b) and (c) then say that the DM moves
 up by at most one step if he observes the strongest available evidence in favor
 of state H (an 5-signal), down by at most one step if he observes the strongest
 evidence for L (a 1-signal), and ignores all other signal realizations. For an
 intuition, consider the world with an arbitrary but not necessarily small termi-
 nation chance 17 > 0. In any state, the DM can in principle choose any one
 of M transitions. Since p{i) is weakly increasing in i, the DM clearly should
 rank signals, with higher signals leading to higher transitions. Now, as the ter-
 mination chance 77 falls, the DM secures a higher expected payoff precisely
 because the beliefs p(i) incur a "spread," with p{ 1) falling and p(M) rising.
 As a result, the DM grows more discriminating in his willingness to take larger
 memory transitions, and eventually, for small enough 77, no longer jumps over
 memory states. At the same time, only the extreme signals are able to push

 22 Indeed, /x"//4 > rf/Mf ^ V-" (1 ~ ßs ) > Ms d ~ /4) ^ Ms _ ¿4 > (Ms )2 - (/4)2
 1 > Ms +m£ ^-MÍMi" = 0 - Ms )(! ~Ms) 5; Ms Ms-
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2271

 the DM high enough to move up to the next belief p(i + 1) or move down to
 p(i - 1).23

 Part (c) only partially characterizes the transitions at interior memory states.
 Outside of I*, the DM moves deterministically after the more powerful of the
 two signals s e {1, 5}. That is, transitions are fluid up if signal S is stronger,
 and fluid down if signal 1 is stronger; transitions may be sticky in response to
 the weaker signal, but a precise characterization is difficult and depends on the
 signal asymmetry. But when the prior bias ß > 1 strongly favors the true state
 H, there is a nonempty block of interior memory states I* in which transitions
 are sticky down even if the signal realization 1 is stronger than S.24 In other
 words, inside I*, the DM reacts only probabilistically to evidence against his
 prior bias. In the special case of a binary symmetric signal, transitions are fluid
 both up and down in all states outside of I*, while all states in I* are sticky
 down.

 For insight into part (d), consider memory state 1, in which the DM is max-
 imally convinced of true state L. He is thus unable to react to any additional
 evidence in favor of true state L and wishes to leave memory state 1 only when
 the net observed information favors H. A rule that never leaves memory state
 1 cannot be optimal, as this makes it so uninformative that the DM will find it
 optimal to leave, for we have seen in Lemma 2 that absorbing states are sub-
 optimal for small 17. Conversely, a rule that always leaves memory state 1 after
 high signals cannot be optimal, for then whenever the DM is in memory state
 I, he can infer that he has never seen a high signal, yet has likely seen a large
 number of low signals; thus, he will not leave memory state 1 after just one
 high signal. The optimal rule therefore requires randomization. The chance
 of leaving memory state 1 after high signals is chosen so that in expectation,
 by the time the DM actually leaves, he believes that he has likely seen equal
 amounts of evidence in favor of true states H and L. With small termination

 chance r¡, this requires an exit chance asymptotically proportional to ^/rj.
 Observe the important role of the strategic aspects of this decision prob-

 lem. No Bayesian decision-maker ever passes up free information since it is
 always valuable. But here, the DM is willing to end the problem (and decide
 early) rather than randomize in states 1 and M; indeed, he does so, by Proposi-

 23 Another perspective is that since (by Proposition 4(d)) the probability of ending up in state
 1 or M tends to 1 as ij -» 0, the goal for small 17 is to maximize the relative likelihood of ending
 up in state M (instead of state 1) in the high state of the world and to minimize this likelihood
 in the low state. This is achieved by ensuring that the DM only moves from state 1 to M (or
 from M to 1) after the most extreme available sequences of evidence for true state H (or L). In
 particular, by moving only one state at a time, only after extreme signals, the ratio fļļ fi //'« f'
 tends to (£(S)/£(1))M_1 as rj ->■ 0; this ratio falls if the DM jumps states or reacts to intermediate
 signals, as it becomes easier to mistakenly move between states 1 and M. See also the illustration
 in Appendix E (Step 1 of the example) in the Supplemental Material.

 24This asymmetry reflects the assumed prior bias ß > 1. Had the prior bias strongly favored
 the true state L, transitions would have been sticky up at an interior block of memory states.
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 2272 ANDREA WILSON

 tion 4(d). So the DM in these memory states must be indifferent about moving
 and yet the DM can only profit from further signals by moving.25
 Hellman and Cover (1970) characterized a class of e-optimal automata, sat-

 isfying analogs to Proposition 4(a) and (b), and a modification of (d). They
 found that transition chances out of memory states 1 and M must be small
 to generate payoffs within any e > 0 of lim^o They require e-
 optimality, since transition chances out of memory states 1 and M are forever
 positive, but vanish as r¡ -»■ 0: a payoff discontinuity arises when states 1 and
 M are absorbing.

 Proposition 4 yields a simple expression for Bayesian beliefs and cutoffs in
 Proposition 2.

 Corollary 3 - Limit Beliefs: As 17 - > 0, the likelihood ratio ¿(i) with an
 optimal memory tends to Jin 'ttl'/tth à'~(M+1)/2 and the indifference ratio Ï, tends
 to£(5)*(i) = £(l)*(i + l).

 So each state-/ self starts out with the prior i{i), then observes the sig-
 nal and moves to memory state j if his posterior likelihood ratio belongs to

 As the termination chance r¡ -> 0, these intervals tend to í¡] - ►
 [£(1 )¿(j), ¿;(S)l(j)]. Critically observe that in this limit, there arises indiffer-
 ence after the extremal signals 1, 5, consistent with the thrust of Proposition
 4(a) and (c). This is the reason why no memory state jumps arise and why no
 nonextremal signals matter. Notice also that the belief likelihoods £(j) grow
 geometrically in j, with ¿(j + 1 )/£(;) = £(5)/£(l).

 This likelihood equation in particular implies that if 17 is near zero and the
 DM advances from memory state i to i + 1 after observing an 5-signal, then his
 beliefs adjust as if he were a Bayesian agent who observed the 5-signal, but also
 forgot a previously observed 1 -signal. The optimal memory thereby symmetri-
 cally treats the signals s = 1,5 even if their informativeness radically differs.
 So the optimal finite-state memory behaves like a limited capacity memory:
 the DM stores M - 1 signals, and when the memory is full, can only learn a
 new one by replacing a previously stored one. To this end, observe that the
 likelihood ratios t(ï) are uniformly bounded and finite for all memory states i,
 for fixed M. In other words, expecting to observe an arbitrarily large number
 of signals (with vanishing 17) is not an avenue toward complete learning, which
 can only be secured by increasing the memory size M .

 Next, observe how the prior and the payoffs affect beliefs across states:
 When action 1 is riskier, namely the payoff ratio 'ttl'/tth is higher, all mem-
 ory states are associated to higher probabilities and, thus, can better identify

 25 Precisely, it turns out that instead of moving from memory state 1 to 2 with probability of 2,

 the DM could earn exactly the same payoff by modifying this transition chance to of 2 and also

 terminating the problem in memory state 1 with a probability di¡ satisfying 3fi2 = <tl2-
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2273

 state H. Similarly, when the DM's prior on state H rises with higher £0, associ-
 ated memory state probabilities shift up.

 6. BEHAVIORAL PREDICTIONS

 An optimized finite-state memory sheds light on some well known behavioral
 biases. First, people tend to ignore all but the most salient and striking informa-
 tion events. For instance, Proposition 4 predicts that when the DM's memory
 is optimized for a small termination chance r¡ > 0, he optimally reacts only to
 the two most extreme signal realizations. In essence, the DM avoids wasting
 limited memory resources on all but the two most informative observations.

 Next, the order in which information is observed matters and, in particular, "first
 impressions matter. " By Proposition 4, if the highest and lowest signal realiza-
 tions s = 1, 5 similarly favor the respective true states L and H , then a DM
 who starts in an interior memory state will move up one state after each high
 observation and move down one state after each low observation. Also, once
 he reaches one of the extreme memory states 1 or M , he exits each period with
 only a small probability proportional to rj . Now, fix a time t < oo and e > 0,
 and assume that the signal sequence begins with enough consecutive high ob-
 servations s = 5 so as to land the DM in memory state M after at most M - 1
 steps. Then for rj > 0 small enough, the DM ignores any subsequent low sig-
 nals 5=1 with high probability, and thus remains there until time t with chance
 at least 1 - e. Similarly, if the sequence instead begins with M - I consecutive
 low signal observations, then the DM ends up in memory state 1 with proba-
 bility at least 1 - e. While this contrasts with a Bayesian DM, for whom the
 order of signal observations does not matter, it agrees with the predictions of
 the Bayesian social learning models. In both cases, a coarse observed historical
 signal is critical.

 Third, people tend to see what they want to see. Proposition 4(c) asserts that for
 large enough ß > 1, there is a nonempty set of states I* in which transitions are
 sticky down, while the DM reacts with probability 1 to observations supporting
 his initial bias. A symmetric result obtains for low enough ß < 1, yielding an
 interior block of states in which transitions are sticky up, but not sticky down.
 In other words, given a strong prior bias toward one of the two action choices,
 the DM optimally (probabilistically) ignores evidence favoring the alternative
 choice. All told, we see that a confirmation bias optimally emerges as a best
 response to bounded memory.

 In a related finding, this memory model predicts belief polarization: People
 with conflicting initial views can observe exactly the same information and then
 move in opposite directions. Indeed, consider two DM's, one with large ß > 1
 and one with small ß < 1. After seeing the same two extreme signal realiza-
 tions 5 = 1,5, the first agent moves up in expectation (surely reacting to the
 high observation 5 = 5, but sometimes ignoring 5 = 1), while the second agent
 moves down in expectation, reacting for sure only to the low observation. In
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 2274 ANDREA WILSON

 other words, each reads the evidence as supporting his hypothesis and contra-
 dicting the alternative.26 Note that polarization occurs even though the signal
 distribution ¡jl 9 is known; there is no ambiguity in the interpretation of evi-
 dence. In the extreme case, with sufficiently opposed prior biases, agreement
 is essentially impossible between the two agents: one only moves up and the
 other only moves down.

 7. RELATED LITERATURE AND CONCLUSION

 7.1. Computer Science

 Hellman and Cover (1970) introduced the problem of the optimal design
 of a finite-state automaton - in their case, maximizing the chance of correctly
 identifying a state 0 € {H, L } after an infinite sequence of informative signals.
 They first derived a payoff upper bound and then showed that one can achieve
 a payoff arbitrarily close to this number. Their paper corresponds to the limit
 as Tj ļ 0 of my model with identical payoffs tth = |77-L|. As I explained after
 Proposition 4, no optimal solution exists at this limit, thus explaining why Hell-
 man and Cover focused exclusively on e-optimal rules. Despite having contin-
 uous rather than multinomial signals, as I do, their results are comparable to
 the payoff bound in my Proposition 3, and to the transition rule characteriza-
 tions in parts (a), (b), and (d) of Proposition 4. In particular, my finding that
 the DM only reacts to the two most informative signal realizations when 17 is
 small corresponds to their result that only signal realizations with sufficiently
 extreme likelihood ratios matter.

 My paper makes many technical advances over Hellman and Cover. I show
 that a robust class of perturbations of their environment yields existence, and
 essentially uniqueness, of an optimal solution, and not just an e-optimal one.
 With a small termination chance tj > 0, transition chances out of the extremal
 memory states are asymptotically proportional to v/řj. I also find that tran-
 sitions are fluid at most interior memory states, whereas Hellman and Cover
 note only that e-optimality requires transition chances in the interior states are
 large compared to those in extremal states.

 Technical robustness aside, my primary novel contribution is the strategic
 formulation and characterization of the learning problem. I have recast it as
 a dynamic game with imperfect recall, in which selves must optimally encode
 new signals by wisely passing the baton to the next agent or by retaining it.
 I have computed the optimal decision rule of each realized self: In the equiva-
 lent team equilibrium, all selves act as if in a time invariant M-action decision
 problem with fixed but endogenous payoffs (the baton toss and the memory
 state values).

 26For instance, in a famous experiment, Lord, Ross, and Lepper (1979) allowed two groups of
 people - one in favor of capital punishment and one opposed - to read identical studies for and
 against. Many of the initial proponents moved even more strongly in favor of capital punishment,
 while many opponents became even more opposed.
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2275

 7.2. Psychology

 My model shares some structure of two memory agendas in the psychology
 literature, and also realizes some of their goals. Cowan (1995) explores finite-
 capacity memory models of short-term memory. My paper provides a novel ra-
 tional foundation for this assumption. I argued that the DM optimally behaves
 as if he has a finite-capacity memory, and must forget a previously stored ex-
 tremal observation whenever he learns a new one.

 I also relate to the long-term working memory (LTWM) literature (see Chase
 and Ericsson (1982)). Ericsson and Kintsch (1995) propose an LTWM model
 consisting of a set of nodes, each representing a block of information stored in
 long-term memory; only the memory node can be recalled, and not the orig-
 inal information sequence. This resembles my assumed structure with finitely
 many memory states and the Markovian transition rule restriction. Ericsson
 and Staszewski (1989) pointedly argue that "to meet the particular demands
 for working memory in a given skilled activity, subjects must acquire encod-
 ing methods and retrieval structures that allow efficient storage and retrieval."
 Indeed, my optimization precisely solves for the optimal such encoding. And
 consistent with my optimization of the memory for the specific decision prob-
 lem, they observe that "LTWM is therefore closely tailored to the demands of
 a specific activity."

 7.3. Economics

 Economists have explored models in which information histories must be
 bundled, such as the discussed informational herding literature. As seen,
 my model offers an infinite horizon application of the solution concept in
 Piccione and Rubinstein's (1997) model of imperfect recall in the absent-
 minded driver's paradox. I have applied their solution concept and shown that
 a steady-state Markov model captures their belief restriction. Dow (1991) in-
 troduced a simple sequential price search model in which the DM could only
 recall whether he had categorized past prices as low or high, and must op-
 timally design the categories.27 Finally, Mullainathan (1998) and Rabin and
 Schräg (1999) explicitly build models around biased inferences; my paper
 shows that many systematic biases are consistent with Bayesian rationality sub-
 ject to a constraint and, hence, do not necessarily imply that people are funda-
 mentally unable to make probability judgments.

 27For another approach to decision-making through categories, see the case-based and
 analogy- based models in Gilboa and Schmeidler (1995) and Jehiel (2005).
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 2276 ANDREA WILSON

 APPENDIX A: OMITTED PROOFS

 A.l. An Equivalent Model With Flow Payoffs

 Consider a repeated problem: the DM chooses among actions 0 and 1 every
 period, earning payoffs 0 and it9, respectively. In true state 6, let X9 be the
 expected payoff if the problem terminates after t signals, and let x9r denote the
 expected payoff increment earned in period r < t. By linearity of expectations,
 Xf = x9. Recalling from (1) that gf'T is the chance of memory state i after
 t observations, so x 9 = Y^L' d¡Trege¡'T, the expected payoff in true state 6 is

 oo oo t / M '

 c11) ZÌ 17(1 ~ ^'xt = J2 77(1 ~ ) /=0 i=0 T=0 V /=1 /
 M oo t

 = J2 diir6 Ž H 7,(1 ~
 i= 1 t= 0 T=0

 Changing the order of the summation,

 00 t 00 / 00 '

 ¿ ¿ - vYb''t = ¿( ¿ vū - vY W'T ř=0 T= O T=0 ' t=T J
 oo

 = J2(1-vYg<!'T = f!'/v,
 T= O

 final equality by (1). Substituting into (11), the DM's payoff in each state d is
 then i times his one-shot payoff i ffdiir9, establishing the desired equiva-
 lence.

 A.2. The Terminal Distribution

 Lemma 3: The sum in (1) converges for any (g°, a, d), yielding a unique distri-
 bution f. This distribution f" equals the steady -state distribution of a perturbed
 Markov process with transition probabilities (ofj = rj g°. + t ? . from i to j.

 Proof: Fix a memory size M, termination chance rj, and protocol (g°, a, d).
 Let T9 be the induced transition matrix with ( j, i)th entry r? . = (1 - 17) x

 Yls€sfJLscrij • Then the distribution g9j after t observations satisfies g6'' =
 (7-7(1 - V)Yg°, so by (1), f9 = JZoVa - vYg9'' = EZo(T9yVg°. Now,
 transform T9 into an irreducible matrix by deleting row/column j whenever
 rfj = 0 V/, and redefine this as T9. Since the column entries in T sum to
 (1 - tj) < 1, T9 is an irreducible substochastic matrix, and hence invertible,
 with inverse (/ - T9)~l = (J9)'. Substituting into our expression for f9,
 we obtain /" = (/ - Te)~l(r)g<>) f 9 = rļg° + T9f9. For state i e A4, this
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2277

 yields ff = rjg? + ^ which rearranges using ff = 1 to the desired
 expression: f? = £;//(Tjg° + Tl¡) = Q.E.D.

 A.3. Absorbing Memory States: Proof of Lemma 2

 Fix ( M , tj), assume that information matters, and let (g°, a, d) be a protocol
 satisfying team equilibrium conditions (i) and (ii). I will prove that if state 1 is
 absorbing, then the first inequality in (8) is violated; together with a symmetric
 argument for state M , (8) thus rules out team equilibria with absorbing states.28
 Lemma 2 then follows immediately by Proposition 1.

 STEP 1: Define j* = arg min,( fj1 t"x )/(//" ) . If memory state 1 is absorbing,
 then

 ( Vã,.*" 1 + ^ Y T"A", ' •' l'J '

 (n-H Tf,l Tr,i Ps Ms H 17 V „ + _L + r",i V,1 ) ' ' 1-Pofj: Po ff fH (n-H Tf,l Ps H 17 „ _L + V,1 ' ' Po ff fH (n-H Tr,i Ms V + r",i ) 1-Pofj:
 V ¿>2 /

 PROOF: If memory state 1 is absorbing, then it must be optimal to stay after
 an 5 -signal, requiring 1 > ¿(1, S)A"jA¡¡ j V/ e M (by Lemma 1(a)). To com-
 pute Ajtl, note that = 0 (since state 1 is absorbing and chooses action 0),
 while for any other memory state j, (5) yields v? = qdji t9 + r^vf . Subtract-
 ing Œi> 2 TjM = (1 - i? - t® i)Vy from both sides, we obtain

 (13) Ąt - V» - < = (nd,v" + £ /(» + <,)•

 To compute ¿(1, 5), recall from (1) that /® wi,j = I^>2 ffaj, v Since mem-
 ory state 1 is absorbing but not an initial state, this becomes ffrj = ^y>2//Ty,i-
 Taking ratios and using (4) for the first expression below, we deduce

 (14) e(i,S).e0((sS^^4^rr^TI^€:{¿4- fi 1 - ~ fi 1 - Po Vs J2fj Tj,i ~ Po fj* Tj*> 1
 j> 2

 Together with (13) (evaluated at j = j*), we obtain the RHS in (12) as a lower
 bound on t{ 1, S)Af^ļ/Aļ^, which then cannot exceed 1. Q.E.D.

 ^Note that it suffices to consider absorbing extremal states. If some state 1 < j < M is absorb-
 ing, then so too must be state 1 (if dj = 0) or M (if dj = 1): If the state-; self is unwilling to ever
 change his action, then so are all selves with more extreme posteriors in favor of action dj.
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 2278 ANDREA WILSON

 STEP 2: The second term in parentheses in (12) is at least 1.

 PROOF: By condition (ii) for a team equilibrium, d¡ > 0 implies t(j)irH /
 'ttl' > 1. Using l(j) = (po/f /(1 - />o)//0 (by (4)), this rearranges as

 (15) djpof^Tr" > dj(l - p0)fjL'iTL'.

 And by condition (i) for a team equilibrium, a transition j i requires that
 payoffs be weakly higher in state i than j at posterior p(j, s). Thus

 asjti >0 =» 0 < p(j, s)A%j + (1 - p(j, s))ńftj

 « Pof"l^"ń"j + (1 - A>)//>^tr

 Summing over all signal realizations s and recalling = (1 - 77) we
 obtain pof^rfjA^ > (1 - Finally, summing this inequality over
 all states i > 2 and then adding (15) yields

 (16) pof" ( ^ Tļdjir" + J2 T"<ú"j) ' £ (1 - Po)tf ( ^ Vdj I ttl I + J2 Ti,iAïi) ' ■ ^ i>2 ' ^ i>2 '

 At j = j*, this rearranges to the desired inequality when the RHS is positive,
 which follows from (13) (the RHS term in parentheses is ^,(17 + r^)) and
 Lemma 1(a) (Aļj > 0). Q.E.D.
 STEP 3 - Completing the Proof: If state 1 is absorbing, then the following vio-

 lation of (8) obtains:

 (17) i ~ - T* 1 Ps *1 + rAi , /*? V + d -
 ~ T;LM /4 V + tf*, 1 lA V>S V + (1 - '

 Proof: The first inequality in (17) is by Steps 1 and 2. So it remains to
 establish the second inequality, which rearranges as

 <18> l^Th,+Ti-<)(rh¡+rf)

 For this, I first show that aj, ^ = 1. Since state 1 is absorbing, we need £(1, 5) <

 lx by Proposition 2; but then by (14), using ļi" /¡Ą > 1 and T¿i/T¿i > llĄ
 for the strict inequality below, we obtain

 > «1,« > tJL'ļrļ Jj* 1 M 5 > (JĻ 4 Ml - «CA !)• Jj* j* , 1 M 5 Jj* Ml

This content downloaded from 
������������69.130.243.174 on Wed, 30 Mar 2022 03:01:35 UTC������������� 

All use subject to https://about.jstor.org/terms



 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2279

 Thus ¿(j*, 1) < ¿i, so <rjt ļ = 1 by Proposition 2. Then defining xe = 2 Mí x
 Oy, j, we have t®, 4 = (1 - + x"). With this, (18) factors as

 "(iTļ W1" - - *>r) - M," ))
 >0,

 which follows at once by our signal ordering, ¡u¡ > ¡x" and ¿uf //u,f > tâ/tâ -
 xL/xH. Q.E.D.

 A.4. Equilibrium: Proof of Proposition 1 and Corollary 1

 Proof of Proposition 1: Fix an optimal protocol (g°, a, d ). We wish to
 prove that under (4) and (5), conditions (i) and (ii) for a team equilibrium
 are satisfied. For (i), we follow Piccione and Rubinstein's (1997) Proposition 3
 proof. Let 17(g°, a, d) denote the payoff in (3). For any i, j e M and s e S,
 optimality of a ? ■ > 0 requires

 (19) ~ rn{g° , cr, d) > a, d ) for ail j'.
 âai,j â(rw

 Now, define X(j', £) as the set of all terminal histories ending in state /,
 X (j', s ) as the set of all (nonterminal) histories ending with observation s e S
 in memory state j', and define Pa(z'z' , 0) as the probability of history z, con-
 ditional on history z' and true state 0. So ff, = Ylzexw.o Pa(z'&)- Observe that
 for any two memory states i, j, P<T(z'6) can be written as (oy)s<z) times a term
 independent of cr?; , where S(z) denotes the number of occurrences of the tran-
 sition i -+s j along history z. Thus ■^rPa(z'0) = Ô(z)P'T (z'0) / a¡¡. Defining
 H(z'i, s ) as the set of all subhistories of z ending with observation s in state i
 then yields

 z'€H(z'i,s ) *'•/ z' eH(z'i,s)

 = Y, Pa{z''0)Pa(z'z',j, 6).
 z'eX(i,s)

 Then using this for the equality below, we get the following expression for

 Ą.T,j>*Mdj""efr

 (20) J2 E
 j'eM zeX(j',0 1>J

 = £ P°(z''e)(j2 E dj^P"(z'z',j,0)'
 z'eX(i,s ) ^j'eM zeX(j',£) ^

This content downloaded from 
������������69.130.243.174 on Wed, 30 Mar 2022 03:01:35 UTC������������� 

All use subject to https://about.jstor.org/terms



 2280 ANDREA WILSON

 By stationarity, the expression in parentheses in (20) is independent of z' and
 is precisely the continuation payoff v®. And by (1), J^ťexa.s) P'* (z' W) = ffßs-

 Thus, -£r Ylj> d f TTe ff, = ff/iļv? by (20), and so (taking expectations with re-

 spect to true state 0)

 jĻn(g°, a, d) = A)//V>f + (1 - Po)f,Lf¿svf
 hi

 oc p(i, s)vf + (1 - p(i, j))vf.

 Substituting into (19) yields condition (i) for a team equilibrium. Condition (ii)
 follows immediately from the linearity of (3) in d¡, noting from (1) that f6 is
 independent of d. Q.E.D.

 Proof of Corollary 1: Consider an optimal protocol satisfying equi-
 librium conditions (i) and (ii). Choose a memory state i with ff > 0 and
 suppose, by contradiction, that the DM prefers some state j i at belief
 p(i), say (WLOG) j < i. So ¿(i)A"j/Af¡ < 1, using Lemma 1(a) implication
 A" j > 0 > AĻj. Also, if > 0, then state i must yield a weakly higher con-
 tinuation payoff than j at the prior p0, so iaA^/A^ > 1. Combining inequal-
 ities, we deduce that ¿0 > i(i) -o- 1 > (f,H /f,L) whenever gf > 0. Then since
 ft = vgo + JlkeM fkTli by (2), it follows that

 nrf+E«i E/K.
 (21) Ļ =

 fi Vg1! + E fkTt> E#TÌ Tk,¡
 keM keM

 But by condition (i) for a team equilibrium, the DM only puts positive proba-
 bility on a transition k -*s i if state i maximizes his payoff at posterior like-
 lihood ¿{ k , i). In particular, state i must be weakly preferred to j < i, so
 t(k, s)A"j/Afj > 1. Together with our assumed inequality ¿(i)A"j/Af ¡ < 1, we
 deduce that askl > 0 =>■ £(i) < £(k,s), so Summing
 over signal realizations, recalling that Tek ť == (1 - 17) J2s<=s °i ¡¡A' we contra-
 dict (21):

 fHTH. fH
 _0 . ^ U rj ^ v J k kJ
 Tk,i ^ U ^ rL L fL V >

 Jk rL Tk,i L Jk fL V 2^ > ak ç :,i^s T fi fL' _ _
 seS Q.L.D.

 A.5. Optimal Rules: Proof of Propositions 3 and 4(a), (b)

 STEP 1: M) is strictly decreasing in 77 whenever information matters .
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 228 1

 Proof: Fix (g°, d). Recall that the DM's objective is to then choose a, and
 hence f9, to maximize (3). And that this is equivalent to choosing the best
 steady-state distribution, subject to the constraint that for any pair of states i, j
 with g°j > 0, the DM puts probability at least rjg^ on the transition i - j after
 all signal realizations s. But by the Proposition 2 lesson, transitions i j are
 strictly suboptimal if £(s) < 1 and j > i or £(s) > 1 and j < i. Therefore, the
 constraint a- j > rjg " Vs is binding for any 17 > 0, with higher tj forcing a higher
 probability on suboptimal transitions, and thus II* (17, M ) is strictly decreasing
 in 17. Q.E.D.

 STEP 2: Fix (g°, d ) and (M, tj), and let i* = min{/|d, = 1}. For any transition
 rule a and the induced distributions fe, the DM's expected payoff is (1 - Pq)'ttl' •
 II(x,r), where

 (22) n(x,r) = JL--l,
 L + x 1 + -5

 r

 i*- 1 M ¿*-1

 Y. z" T.f> Ef"
 i- 1 » i=i* /=1

 x = - M , ' M /*-1

 E/" Ef" E fi
 i=i* ' i=i* i= 1

 Proof: By team equilibrium condition (ii) and the memory state ordering,
 the DM chooses action 1 in all memory states j > i* and action 0 below i*.
 Using (3), his expected payoff is then

 M M

 P^Eff+a-p^Eft
 i=i* i=i*

 (M ßT,f?-T,fn i=i* i=i* M J ' (M ßT,f?-T,fn i=i* i=i* J

 = (1-Ì>.)M(

 i +Ef"/Ef" i+Efi/Ef:
 i= 1 ! i=i* i= 1 * i=i*

 (final equality by dividing each sum f,H by Yl'iLi ff = !)• This is found
 in (22). Q.E.D.

 Step 3: Fix a value r < 1. If r^fß > 1, then II(x, r) reaches a maximum
 value at x = 0 of ß - 1. If rj ~ß < 1, then ll(x, r) is maximized at x*(r) =
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 2282 ANDREA WILSON

 r( 1 - *Jßr) / (^fß - r ), with corresponding value ñ (r) = argmaxx>0/7(x, r) =
 (Vj8-r)2/(l-r2).

 Proof: Differentiating ĪI(x, r) with respect to x yields

 <*> ^=-(āī+(^ī-
 This is weakly positive iff x(*/ß - r) < r( 1 - rj~ß). If r^/ß > 1, then this
 inequality can never hold, as the RHS is strictly negative, while the LHS is
 weakly positive by x > 0 and r < 1 (recalling our assumption ß > 1). Thus
 £lJ(x, r) < 0 over this range, and so II(x, r) is maximized at x = 0. If r^fß < 1,
 then H(x, r ) increases in jc when x < x*(r) and decreases when x > x*(r). It
 is maximized at x = x*(r). Evaluating I7(x, r) at x = x*(r) yields the desired
 n (r) expression. Q.E.D.

 Step 4: Define r* = (£(1)/£(.S))(M_1)/2. Then r* is a lower bound on r (from
 (22)), and the value fl(r) from Step 3 is decreasing in r, with upper bound 77(r*).

 Proof: Assume f9> 0 for all memory states / e M. (otherwise, define M
 as the set of states with f '? > 0). By Appendix A.2, f9 is the steady-state dis-
 tribution of a Markov process with perturbed transition chances w? ., imply-
 ing the following steady-state relationship: for any block of memory states
 A, the probability of exiting A must equal the probability coming into A:
 HjzA ffŒitA </) = Hha f'(EJeA Setting A = {1, 2, ...,/} and taking
 ratios, this implies that for any memory state i and transition rule a,

 i (M ' / ' / '

 T,f" E /"I
 C}A' ^
 C}A' ^

 lift
 j=i v=í+i / '/=i / V '=¿+1 /

 By our ordering of the memory states, the LHS of (24) is at most f" /ft and the
 final RHS term is at least fHJft+' . And for a bound on the first two RHS terms,
 recall that the perturbed transition probability from any state i to j is given by
 <°ij = Vgl + (1 - t7) Taking ratios and using £(1) < i^/tĄ < Í(S)
 and £(1) < 1 < f(S), we deduce £(1) < a>"/<wj*y. < £(S), so that the RHS of
 (24) is at least (£(l)/£(S))(/2ļ//£j). It then follows from (24) that for any
 transition rule cr, the induced distributions f9 satisfy (25) below, and iterating
 then yields (26):

 (25) f" /ft > (f^/ft+1) (č(l) /€(S)) for all / e M

 (26) => tf tf) > (/«/#)/ A > > {f"M/fLM)/XM-'
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2283

 Now, by (22) and our ordering of the memory states (in particular, 1(1) <
 ¿(i) < l( M )), we have

 M i*- 1

 (27) r= y £
 £/•" Hf"

 ' i=i* i= 1

 Substituting (26) into this inequality yields r >r*. Finally, an immediate cal-
 culation shows that r-Jß < 1 => < 0 and thus /•>/•=> fl(r) < 77 (r*).

 Q.E.D.

 STEP 5: Let (g°, a, d) be an equilibrium protocol that violates (at least ) one of
 parts (a) or (b) of Proposition 4. Then there exists 5 > 0 such that the DM earns
 at most (1 - po)'TTL'ñ(r* + Ô).

 Proof: Since we showed in Step 3 that an optimal choice of x yields pay-
 off n (r), decreasing in r, it suffices to prove that a violation of (a) or (b)
 yields r > r* + 5. Suppose first that part (a) is violated, so there are states i, j
 and a nonextreme signal realization s with af j > 0. Assume WLOG that j > i
 (a symmetric argument applies if j < i). Then by Proposition 2 with j >i + 1,
 the equilibrium condition for transition i ->s j implies ¿(i, s) > £j-¡ > Ķ. Also,
 £(i + 1, 1) < í¡; otherwise, l(j, s) > í¡ for all states ; > i + 1 and all signal real-
 izations s, implying via Proposition 2 that no state j > i + 1 moves below i + 1;
 but then the block of states {t' + 1, . . . , M } is absorbing, contradicting optimality
 via Lemma 2. Combining inequalities, we deduce

 Lo(fř/tf)&s) = HU s) > it > Hi + 1,1) = UifUdft i)£(l).

 So m > t( i + l)(f(l)/f(í)). We have Í(1 )/£(M) > (l/')M-2(&l)/m) for
 s < S, given (25) and (26). Substituting into (27), we conclude r>r* + ôi, where

 (28) Ô! = (i/A )("-2)/2(v«i)/fw - Viav&s)).

 Suppose next that part (b) is violated, so there are states t', j with |; - t'| > 2
 such that the DM jumps t' -+s j with positive probability. WLOG, assume
 j > t' + 2. By Proposition 2, the DM must then find it incentive compatible
 to jump from t' up to j after the highest possible signal realization, 5, requiring
 ¿(i, S) > ij-i > ii+1 . But by Proposition 2, we also have ¿(i + 1) < £¡+' . Com-
 bining inequalities, we deduce i(i, S ) > li+1 > ¿(i + 1), and so (using (4))

 ¿o(fř/ftL)é(S) > toifh/fc 0 ^ f?/f,L > {fHjf^)lš(S).
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 2284 ANDREA WILSON

 Together with (25) and (26) , this implies i(l)/t(M) > (1/A)M~2(1/£(S)). Sub-
 stituting into (27), we conclude r>r* + S2, where

 (29) S2 S (^(l)/^(5))(Ai-2,/2(yī7?(5) - ViāviGŠ)).

 Finally, since £(1) < £(s) < ¿¡(S) for any s < S, the expressions ôi and S2 de-
 fined in (28) and (29) are both strictly positive. Thus, defining 5 = min{0ļ, S2},
 we have shown that a violation of part (a) or (b) of Proposition 4 yields
 r > r* + 8 for some 8 > 0, as desired. Q.E.D.

 STEP 6: There exists a sequence of memory protocols (g°, a , d), with associated
 payoffs 77'', such that 77" 77 (r*) as 17 -> 0.

 Proof: Choose any initial state, and any action rule with dx = 0 and
 dM = 1 (fixed for all protocols along the sequence). Now define a sequence
 of transition rules <tv as follows: (i) = 1 if s {1,5}, (ii) ^ = */rj,
 (iii) oiVi ' = )<M_1)/2(1 - r*Vß)/(Vß - r*), and (iv) for all interior

 ' Mj ri

 states i, cr?i+1 = 1 and crf ^ = 1. Putting these into the steady-state system of
 equations in (2), this rule yields ff 0 for all interior memory states i, while

 fļ
 fu <2 W

 /r : (l-r'V/Š) ft 1(1 -ťyfP)
 fS (Jß-r*)' fu r* (Jß-r*)'

 The limiting payoff is then PoTTHf^ + (1 - p0)TrLf1¡. Dividing each term f%¡
 by 1 = 5Z// -> fi + /m and substituting the above expressions for fl/fh yields
 limit payoff 77 (r* ) . Q.E.D.

 STEP 7 - Completing the Proof: Step 2 rewrote the payoff as (1 - /?o)l'""z'l x
 n(x, r), Step 3 derived the value 77 (r) = max.xII(x, r), and Step 4 proved that
 77 (r*) is an upper bound on 77 (r). Together with the Step 1 result that the
 payoff is strictly decreasing in tj and noting that (1 - p0)'irL' -TT (r*) is precisely
 the payoff bound in Proposition 3, with r* = Vp*> this completes the proof of
 Proposition 3. Next, Step 5 proved that a protocol that reacts to noisy signal
 realizations s £ {1, 5} or that jumps to nonadjacent states implies that the value
 77 (r) is bounded below 77 (r*). Thus, there exists e > 0 such that a violation of
 Proposition 4(a) or (b) earns payoff at most (1 - Po)'ttl' ■ IJ(r*) - e. But by
 Step 6, there exists a sequence of protocols with limit payoff (1 - pq)'ttl' •
 77 (r*); then by continuity, for any e > 0, there exists r¡f. such that an optimal
 protocol earns a payoff above (1 - Pq)'ttl' • 77(r*) - s whenever 17 < 17 E. Thus,
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2285

 for Tj < T)e, a rule that jumps or reacts to signal observations s ^ {1,5} is not
 optimal, proving Proposition 4(a) and (b). Q.E.D.

 A.6. Extremal States: Transition Chances Vanish as 17 ->• 0

 Fix a memory size M, assume information matters, and consider a sequence
 of protocols (g°, a, d ) with 17 -* 0 (suppressing dependence on 17). Let /7",
 r", and x" denote (respectively) the sequence of associated payoffs and values
 of r, X (from (22)). Steps 1 and 2 are technical lemmas; Step 3 proves that
 transition chances out of the extreme states vanish as tj -> 0, and Step 3(iv)
 in Section A.9 completes the proof of Proposition 4(d), proving that of 2 and

 are *n fact asymptotic to ^/řj.

 STEP 1: If II" ->• (1 - p0)'irL'n(r*), then x" -*■ x*(r*), r" -*■ r*.Also,

 (30) €(i)/*0' + l)-»-f(l)/£(S) and r" -► y/H')/l{M) (1/A)(M-1)/2.

 Proof: The first assertion is immediate from Steps 3 and 4 in Section A.5.
 And by (27), r" - > r* if and only if (25), (26), and (27) all hold with equality in
 the limit, yielding conditions in (30). Q.E.D.

 STEP 2: If i7" -► (1 - Pq)'ttl' ■ Ū(r*), then ff /ff - >■ 0 for all interior states j.

 Proof: Assume that x" x*(r*) and that the first limit in (30) holds.
 Rewrite (27) as

 M- 1 i*-l

 i+Efj/f« i+Eff/f" , -
 (31) r=

 . i*-i v e(M)

 i +T.f" . fH i +T,fi/f<
 ' M* N J- 2

 By the ordering of the memory states, the RHS of (31) is at least y/i{'
 thus, for it to tend to exactly as required by the second limit in
 (30), the first and second terms must both tend to 1 as r¡ 0. But by £(1) <
 1 < |(5) and the first limit in (30), there east r¡* > 0 and À > 1 such that for
 all 17 < 17*, i(M)/£(j) > À and t(j)/i{l) > A. Rearranging yields

 (32) W/fòzXiff/fS) and tf/f«) > A(tf ///")•

 But then the first RHS term in (31) can only tend to 1 if ff/f¡¡ - 0 V/* <
 j < M - 1 (by the first inequality in (32)); similarly the second RHS term can
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 2286 ANDREA WILSON

 only tend to 1 if ff/f* -> 0 V2 <;</*- 1 (by the second inequality in (32)).
 But these two limits imply via (22) that x" -> fl/fh, and so xn -> x*(r*) > 0
 implies fhfh 0. Thus, for all i* <j < M - 1, we have ff/ffh -*■ 0 =► ////' =
 (////m)(/m//i#) and since we have also just shown that ff /f* -> 0 V2 <
 j < i* - 1, this completes the proof. Q.E.D.

 STEP 3: If J7" -*■ (1 - Pq)'ttl' • 77 (r*), then transition chances crf2, o-ļi A/_1
 vanish as 17 -> 0.

 Proof: Suppose, by contradiction, that i7" -> (1 - />0)I'""LI • ñ(r*) but that
 transition chances out of an extremal state do not vanish, say of 2 -/* 0. Then
 there exists A > 0 and a convergent subsequence of protocols with limit payoff
 (1 - Po)'ttl' • n (r*) and with of 2 > A for all subsequences along the protocol.

 For a contradiction, it suffices by Step 2 to find an interior state j with ff/f^
 boundedly positive as 17 -► 0. Now, consider state j = 2, which (by (2)) obeys
 the steady-state equation

 (33) fi = £/>*2 > />1,2 > /l"(l - V)nWt2-
 j

 So /2 /fi > (1 - i7)/L£®of 2, which stays boundedly positive, as desired, by of 2 >
 A > 0. ' Q.È.D.

 A.7. Beliefs: Proof of Corollary 3

 By Steps 1 and 2 in Section A.6 (respectively), an optimal sequence of pro-
 tocols satisfies xn -*■ x*(r*) and x" - ► f" /fjj, with x*(r*) as defined in Step 3
 of Section A.5. Thus,

 (34) x" - f»/f" -► r*( 1 - Jßr*)/(Jß - r*).

 But since fH is a probability distribution and ff/f* ->• 0 for all interior j (again
 by Step 2 of Section A.6), we have ff + fh -> ¿; // = 1. Substituting fļļ =
 1 - ff into (34), we deduce

 (35) f? r*( 1 - Jßr*)/Jß(l - (rf).

 By Step 1 in Section A.6, an optimal sequence of protocols also satisfies (30);
 thus (from the second limit therein) 'ļ(f" /fjļ )(Jm /ft ) r*- Substituting (34)
 into this expression and using //- + ffa = 1, we obtain ft -*■ (1 - */ßr*)/
 (1 - (r*)2). Together with (35), we then get ff /ft -*■ r*/s/ß, so (by (4)), £(1) =
 W/7/Í) = V^W(l/A)(Ai-1)/2. Then by the first limit in (30), ¿(i) - ►
 A,_1£(l) = ^ol^l/^A'-^1»72, the desired expression. For the indifference
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2287

 likelihood ratios, recall from Lemma 2 that there are no absorbing (blocks of)
 states in an optimal protocol. Then by Proposition 2, a self in state i must find
 it optimal to move up after the highest observation s = S, so ¿(i, S) > í¡ (oth-
 erwise the block {1, 2, ...,/} is absorbing), and similarly we need t(i + 1, 1) <
 í¡' thus ¿(i, S) > ti > £(i + 1, 1)_. But since ¿(i, S) -*■ ¿(i + 1, 1) by the first limit
 in (30), this yields the desired £, = t(i, S).

 A.8. Initial State and Action Rule

 The expressions for i0, i* in (10) follow at once by substituting the Corollary 3
 expressions for ¿ia,£(i) into the inequality £,0_i < í0 < í¡0, which says that
 the DM must earn a higher payoff in state i0 than either i0 - 1 or í0 + 1 at his
 prior likelihood i 0 , and the inequality ¿(í*)tth /'ttl' > 1 > ¿(i* - 1 )tth /'ttl',
 which says that i* is the smallest state to prefer action 1. Note that io > i*
 whenever M is odd or M is even and ß > £(1)£(S). Indeed, recall that
 À = £(S)/£( 1) > i(S), so log ^(5)/ log À < 1. If M is odd, it then follows that i0
 is increasing in log */ß/ log A with i0 > which is the maximum value for i*

 by ß > 1. If M is even, then ß > £(1)£(S) implies log - log £(S) > - ' log A,
 implying i0 > y + 1, which strictly exceeds i* by ß >1.

 A.9. Interior States: Proof of Proposition 4(c)

 Steps 1 and 2 in this proof are technical; Step 1 derives recursive equations
 on the steady-state distribution and the payoff differentials, and Step 2 uses
 these to derive necessary conditions of an optimal protocol (for 17 near zero).
 Step 3 proves the first assertion in Proposition 4(c), namely, that no state can
 be sticky both up and down, and that interior transition chances stay bounded
 away from zero as 17 -> 0. Step 3 also completes the proof of Proposition 4(d),
 proving that of 2 and crlM M_ j are asymptotic to ^/rj (Section A.6 proved only
 that they are vanishing).

 STEP 1: Fix a convergent sequence of optimal protocols as 17 ->• 0. There exists
 rj* >0 with fluid transitions x = 1) into extreme states for all 17 < tj*.
 Define a, = and ßi = Terminal distri-
 butions fe and payoff differentials obey

 (36) i < i0: oiļfļ ļfl = rj ¿(«//o-^X) (a
 1=2

 29 As usual, I use the convention that = of 2, a2 = /3m- i = and ßM = <rh,M-v
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 fe M-'
 (37) i > io: ^/3, fe = i) YXP'/vfj+inDM/ti)'"

 J M /=/

 "I" f^s) +°(17)>

 (38) / < f : ^t± ál^/Al = *l2 ¿(l/a^K^r'
 1=3

 + {fLi/tLs) +0(r¡),
 S Ad M-2 , ^ V / fl ' 1+1-1

 (39) ^^ Pi- S 1 AMļM-' Ad = <^,WJ-)fe) M-2 'P/+i/ , ^ V '/*i / fl / ' Pi- 1 AMļM-' i=i_x 'P/+i/ '/*i /

 +(^)"-'+0,,
 Proof: Choose 77* so that Proposition 4(a), (b), and (d) hold for tj < 77*.

 We first prove (36) by induction and prove a' x = 1. For i - 2< io, evaluate (2)
 at i = 1 and g? = 0; this yields

 (40) (17 + (1 - T?>crf 2AL|)/iö = fi (1 - v)nWli

 * f=é("¿+^í H4
 This is precisely (36) evaluated at / = 2, as long as a' x = 1. To prove that =
 1, take ratios in the first expression in (40) to deduce £(1,5) > í(2, 1); but
 then since l{', S) = i' by Proposition 2 and Proposition 4(d) - which requires
 that the DM be indifferent between states 1 and 2 after observing an 5-signal
 in state 1 - we have t{ 2, 1) < lx' by Proposition 2, optimality then requires
 <j' x = 1, as desired. Now (inductive hypothesis) assume (36) holds at i - 1 and
 i for i < i0 - 1. Now, for i + 1, by (2) in state i, using Proposition 4(a) and (b)
 together with gf = 0 yields

 (17 + (1 - v)(pWI-i + MŚofi+l))/'

 = ft-iū - v)ßWf_u + - r) )ix'<T}+u.

 Taking limits and multiplying by aM noting that a¿+i/a¿ =
 <u/<+i> this yields

 ft ~ w,« rf)' ft) I vr ft ) v
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2289

 Substituting expressions for ff /f^ and ff_Jf[ from (36), noting that
 fiKps/l1 1) = ai(f?/fi - vl^li-xlA) + o(tj), this simplifies precisely to the de-
 sired expression.

 To prove (38), for 2 < i < i* - 1, (5) yields the next expression for vf by
 Proposition 4(a) and (b) (no jumps or transitions after s ± 1, S) and the fact
 that i < i* - 1 =► d¡ = 0:

 (41) vf = (1 - v)nWli-i vU + (1 - v)^Wu+ivU

 + (1 - tj)(1 - al¡_lfL' - al+lti |)vf

 => (v + (1 - Tì)»Wb-òAli-i + Vvl 1 = (1 - V)ßs<r?,i+iAi+i,i-

 But from (5) at i = 1, using rf 4 = (1 - t7)(1 - of^/As), we obtain rjvf =
 (1 - ti)af 2^s^2,v Along with the identity àf_Ul = Af^ x + uf, I may rewrite
 (41) as (for i < i* - 1)

 (42) (77 + (1 - T7)/Afť7-^._1)JfI._1 + 17 Af_u + (1 - 17

 = (1 - łj )ßesafi+1Aei+u.

 Then taking limits in (42) and rearranging gives

 (43) MWA = + <2^1 + 0( v).
 Solving this recursion yields the expression in (38) as is easily verified by in-
 duction. Then (37) and (39) are found symmetrically, indexing states by their
 distance from M, not 1. Q.E.D.

 Step 2: Assume i* > i0, choose 17 small enough that the Step 1 expressions
 hold, and, letting Ài = ¡x " /¡a" and À2 = ¡Ą /¡x^ , define the expressions

 ( } "-( <A 'r1 J' *"( Aj-1 )'

 1 { ixLs^~' J' ' Af-'
 In an optimal protocol, the left-hand sides of (45), (46), and (47) hold, with equal-
 ity if ofl+1 e (0, 1), and the right-hand sides hold, with equality if a ¡¡^ e (0, 1):

 (45) i < i* - 1: ¿ /¿ - a' < (°í>2)2/ V + 0(1 7)/t? 1=2 1=2 a'
 / / /-1

 aixi / / y1 y¡_

 ~hah-J ha>' y1
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 a 1

 , ■ ■ h<-'' KT^Í' + Olr,)
 (4«) , ■ ■

 yi_ &M i
 ha> °"u h ai

 E ai
 7?~Xl °M~1 1=2 °M~1

 - /*- 1 i- 1 '

 y¿_ i aM ui
 ha' i <2 h"'

 (47) *>*„: 22-^/22J± aU+l ' lPl l=i aU+l ' /=,+ lPl 71
 M- 1 ~ /M-1

 ßiVi ~ I

 "èî/ tr^'
 ¿0 __5 M-l

 Í48Í ^ ^ " ^1'1 aM * ^ ,+1 Í48Í ^ ' Tí ^ ¿*-1 M-l '
 V ^ aM
 V ^2 <*' <2 ¿ «<

 _+ / Aļ Y^"1^2/ A(M~1)/2 - y/jg '
 «f.2^ _+ W Vv^A(M-W2-l/

 Proof: Consider first a state i < i* - 1 < i0. By Lemma 2, moving up a
 state must be optimal after an 5-signal, and by Proposition 4(d), of 2 € (0, 1).
 Using Proposition 2, the respective optimality conditions are i(i, S)/¿¡ > 1,
 with equality if o£+1 € (0, 1), and 1(1, S)/l' = 1. Thus, using (4) and ¿¡ =
 Afi+l /A"+l i, optimality implies the expression, with both inequalities tight if
 af,+1 e (0, 1),

 (49) ¿(i,S)/Íl>(l,S)/Íl
 * vr/fn«uKi) ± (fi/fiMiuK 2Ì-

 By (36) and (38), (//V/i" ) ( A'+uMli ) is proportional to the next expression,
 plus an o( tj) term:

 i 1 / 0 ' I- 1 1 1 / 6 ' I- 1

 +K2)2E^(5) 1 ai 1 'Pl/ / 6 ' I- 1 +<£• 1-2 1,1- ' Pi 'Ps/ i-2 ai 'Pl/
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 BOUNDED MEMORY AND BIASES IN INFORMATION PROCESSING 2291

 Substituting into (49) and solving for (of2)2/i7 yields the first inequality in
 (45), from the definitions of x¡,y¡ in (44). Likewise, the optimality condition
 for ¡r¡1_ j > 0 can be written in terms of the condition for of 2 e (0, 1) as
 l(i, 1 )/£,_i < £(l, S)/iu with equality if o-}^ € (0, 1); putting (36) and (38)
 into this inequality and solving for (of2)2/i7 yields the second inequality in
 (45).

 The argument for states i > iQ > i* is symmetric: by Proposition 4(d),
 aMM- 1 € 1); and by Lemma 2, cr]^ > 0 and afi+l > 0. By Proposition 2,
 optimality then demands ¿(i,S)/Í¡ > t(M, l)/ÍM~i > t{i, 1) /Ā-i : the first in-
 equality is tight if of<i+l € (0, 1) and the second is tight if o-}i_ļ e (0, 1). Substi-
 tuting (37) and (39), and solving for (<j¿ yields (47).

 To obtain (46), we again need t(i, S)/l¡ > ¿(1, S)/l', with equality if cr?+1 €
 (0, 1), and ¿(i, l)/€,_i < 1(1, S)/Īu with equality if € (0, 1). Write the first
 inequality (for a£+1 > 0) as

 (5°) ,«* fi . ft Aíi+ 1 where lvhrrn 4U .1 = <1
 (5°) ,«* 7 / 1 . / 1 1 lvhrrn where .1 = -, / 1 1,2 / 1 1,2 2,1 M,M-' 1 2,1

 For i* <i< i0, use (36) to get an expression for ff/ff, and use (38), (39), and
 the identity in (50) to get an expression for A9i+U/Alv Substituting into the
 inequality in (50) and solving for (of2)2/tj yields the first inequality in (46),
 using <Tm M_Jßi = aM/a¡. The second inequality is similar.
 To obtain the first expression in (48), since an optimal protocol has of 2 e

 (0,1) and a-ļiM_ļ e (0,1), Proposition 2 demands í(í,S)/¿i = t(M, 1)/
 lM_i = 1. Recalling (4) and the definition i¡ = Afi+ļ/A"+ļ this requires that
 (// If h ) (¿i® //X j ) ( 42, i /AeMM_l ) be state symmetric (i.e., equal in states d =
 H, L), which rearranges to the condition

 / ' i,,-, ' / fatäs. i ' (fgAÏ-v '
 'f£tfAZ#J' /1X2 ) KfiirititjiJy f"K 2 y

 Substitute (36), (37), (38), and (39) into this expression and solve for (of>2)2/ij
 to obtain the desired expression.

 For the next expression in (48), by footnote 10, fx If m -*■ y" / y m> aQd
 by Proposition 4(a), (b), and (d), yf/yß -► -+

 Put this into (34) and solve for [1^7 1 o-}+1J/arfJ+l =
 aM/of2 to get the desired expression. Q.E.D.

 STEP 3: There exists rj* such that in an optimal protocol with 17 < tj*, (i) no
 memory state is both sticky up and sticky down; (ii) if i is sticky up, then i + 1 is
 fluid down ; (iii) transition chances in the interior states are boundedly positive as
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 y) - > 0; (iv) transition chances in the extreme states, <rf 2 and crlM M_v are asymp-
 totic to ^/řj.

 Proof: Parts (i) and (ii) are immediate from (45), (46), and (47). For exam-
 ple, if a state i <i* - 1 is sticky up, then the first expression in (45) holds with
 equality: (of2)2/i7 + 0(17) = J2'i=2 x'/ Y?i=2yi- ®ut the RHS of this expression

 is strictly below both Y1'i=2x'/ Yl'iZlyi an^ Yl'itl xi/ Y1'i=2 y i> implying that the
 second expression in (45) cannot hold with equality for either state i or i + 1;
 therefore, neither i nor i + 1 is sticky down in an optimal protocol. The proof
 for states i > i* is similar, given the corresponding expression (46) or (47).
 For part (iv), since ß > 1 implies (via (10)) that i0 > 2 and since i* > 2 if

 information matters, optimality of of 3 > 0 yields the first inequality below,
 and optimality of cr¡ 2 > 0 yields the second inequality. Also, if of 3 e (0, 1), the
 LHS expression holds with equality:

 x2 (^iS2)2 + °(r]) x2 + xi/ď2i
 - < -

 z2 17 Z2

 y2, if i* > 3,
 z2- ■ £L M-u2 , if /* = 2.

 . °ï 2

 By (44), the LHS and RHS expressions are both positive and finite, thus im-
 mediately implying that (of 2)2 must be asymptotically proportional to 17, as
 desired. The argument for state M is symmetric as long as i0 < M. If i0 = M,
 see the final paragraph of this proof.

 For part (iii), suppose, by contradiction, that there is some state i with
 1 ^ 0 or <7f1+1 -* 0. If i < i0 - 1, choose the smallest such i, and if i > i0,

 choose the largest such i. Suppose first that i < i0 and 0; then a, -► 0.
 But then if i < i* - 2, the RHS expression in (45) tends to zero for state i + 1,
 since the final term in the denominator, y¡/a¡, explodes as a, -*► 0, while all
 other terms in the expression are boundedly positive by construction. While if
 i > i* - 1, then the RHS expression in (46) tends to zero in state i + 1, since the
 final denominator term «,/a, explodes, while all other terms are again positive.
 Either way, the optimality condition for crj+u > 0 implies that (of 2)2/i7 must
 tend to zero as 17 - > 0; but this violates the LHS expression in (45) at i = 2,
 which requires (of 2)2/i7 - ► x2/y2 > 0 - a contradiction.

 Suppose next that i > /0 + 1 and that 0, so /3,_i -» 00 (using the
 fact that transition chances in interior states above i are boundedly positive
 by construction, and the part (ii) implication that arj^ € (0, 1) => of_u = 1).
 Then the RHS expression in (47), evaluated at i - 1 rather than i, explodes
 as 17 -> 0, implying that optimality of (r/_M_2 > 0 requires (o-ļi M_i)2/ri 00.
 But if i = M - 1, this contradicts the second expression in (47) at i = M - 1
 (which must hold with equality if M_2 0, so (crļi M_1 )2/i7 -*
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 which is finite by (44)), and if i < M - 2, then we have a contradiction
 to the first expression in (47) at i = M - 2, which requires I1)
 ( Vļ/-2/°A/-i ,M-2 + vM-i )/uM- 1 (which is finite by (44) and the fact that
 is boundedly positive by construction).

 And finally, if - <• 0, while transition chances in states above and below

 ¿o are boundedly positive, then aM/crf¿ = ''f=2 0 (using the re-
 sult from the last paragraph that and of2 go to zero at the same rate if
 i'o is interior), contradicting the second expression in (48). This completes the
 proof that o-¡¡_ j must be boundedly positive as rj ->• 0 for all interior states i

 and the proof that <x£+1 0 is symmetric.
 Finally, to complete the proof of (iv) if i0 = M, since transition chances in

 all interior states are boundedly positive as 17 -> 0 by part (iii), and since we
 showed that of 2 is asymptotic to yř?, the second expression in (48) can only
 hold if also (Tļf ļļ_ i is asymptotic to ^/rj. Q.E.D.

 Step 4: There exists 17* such that in any optimal protocol with 17 < 17*, (i) all
 interior states are fluid up if Aļ < À2, while all interior states outside of I* are fluid
 down if Ài > A2; (ii) if Ai < A2, then there is a set of interior states I such that
 all states i $ I are fluid down, while all states i € I are sticky down. Moreover, for
 symmetric signals, 1 5 {/* + 1, . . . , /0 - 1}.

 The proof is straightforward, but algebraically intensive; the proof is in Ap-
 pendix C in the Supplemental Material.
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