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COMMENT ON “SMITH (1995): PERFECT FINITE HORIZON

FOLK THEOREM”1

Ghislain-Herman Demeze-Jouatsa a,2 and Andrea Wilsonb,3

Smith (1995) proved a perfect folk theorem for finitely-repeated stage games with
recursively distinct Nash payoffs, without assuming a non-equivalent utilities (NEU )
condition. While his theorem is correct, the constructive proof contained a small gap,
using strategies only guaranteed to form a SPNE under NEU. Here, we illustrate the
gap with a counterexample, and resolve it with a small adjustment to his strategies.
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1. INTRODUCTION

Benoit and Krishna (1985) proved a perfect finite-horizon folk theorem under
a full dimensionality condition, assuming at least two distinct Nash equilibrium
(NE) payoffs for each player. Smith (1995) extended their result by relaxing both
assumptions: he showed that it is enough that the stage game have recursively
distinct NE payoffs, and allowed for players with affinely equivalent utilities.

His proof used a five-phase strategy profile, in which early deviations by
player i were punished using his effective minmax profile: determine the highest
minmax payoff among players equivalent to i, and play the corresponding action
profile. The construction only included punishments for non-equivalent players
who deviated during i’s minmax phase. Smith then referenced his earlier working
paper Smith (1994) for proof that the proposed strategies constituted a subgame
perfect Nash equilibrium (SPNE). But that paper ruled out equivalent players;
in this case, i’s effective minmax reduces to his standard minmax, so that the
player being minmaxed gains nothing by deviating.

With affinely equivalent players, i’s effective minmax profile may have the
property that player i himself is not playing a myopic best response, in which
case punishments must be added to deter deviations by player i (along with
his affine twins) during his own minmax phase. We illustrate this issue with a
counterexample, propose a small modification to the punishment phases, and
show that the adjusted strategy profile constitutes a SPNE.

2. SMITH’S FOLK THEOREM

Let G = 〈Ai, πi; i = 1, 2, . . . , n〉 be a finite normal form n-player game, where
Ai is player i’s set of mixed strategies over a finite action set, A ≡ ×n

i=1Ai,

1The first author found the error and suggested a fix; the second became a co-author during
the review process after suggesting a simpler resolution.

2I am grateful to Christoph Kuzmics, Frank Riedel, Tim Hellmann, and Olivier Gossner for
helpful comments.

3I acknowledge helpful input from my wonderful dog, Mavi.
aCenter for Mathematical Economics, Bielefeld University; demeze jouatsa@uni-bielefeld.de.
bGeorgetown University, Economics Department; aw1020@georgetown.edu.
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and πi : A → R is i’s utility function. We assume that players have access to
a public randomization device. Let I = {1, 2, . . . , n} be the set of players, and
for any player i, let I(i) be the set players affinely equivalent to i; normalize
payoffs so that πi (·) = πj (·) for all j ∈ I(i). Player i’s effective minmax payoff
is mina∈A maxj∈I(i) maxaj∈Aj

ui(aj , a−j), or equivalently, the highest minmax
payoff among players j ∈ I(i).1 Normalize every effective minmax payoff to
zero. Let F ∗ be the feasible and (strictly) individually rational payoff set, i.e.
the set of all feasible payoff vectors w with wi > 0 ∀i.

Given a subset of players J = {j1, . . . , jm} and a corresponding (possibly
mixed) action profile aJ = (aj1 , aj2 , . . . , ajm), let G(aJ ) be the induced (n−m)-
player game for players I\J obtained from G by fixing the actions of players in
J at aJ . Define a Nash decomposition of G as an increasing sequence of h ≥ 1
nonempty subsets of players from I, namely {∅ = J0 ⊂ J1 ⊂ · · · ⊂ Jh ⊆ I} so
that for g = 1, 2, . . . , h, action profiles eJg−1 , fJg−1 exist with corresponding Nash
payoff vectors y(eJg−1) of G(eJg−1) and y

(
fJg−1

)
of G

(
fJg−1

)
different exactly

for players in Jg\Jg−1; and for any i ∈ Jg\Jg−1, let zg,i be i’s least-preferred
action profile among those yielding payoff vectors y(eJg−1

) and y
(
fJg−1

)
. The

game has recursively distinct Nash payoffs if there is a Nash decomposition with
Jh = I.

Smith’s main result is as follows, withG(δ, T ) the T -fold δ-discounted repetition
of G:

Theorem 1 (Smith): Suppose that the stage game G has recursively distinct
Nash payoffs. Then for the finitely-repeated game G(δ, T ), ∀u ∈ F ∗ and ∀ε > 0,
∃T0 <∞ and δ0 < 1 so that T ≥ T0 and δ ∈ [δ0, 1]⇒ ∃ a SPNE payoff vector v
with ‖v − u‖ < ε.

Gap in Original Proof.
Smith’s proof was constructive (see full strategies below, along with the required

adjustment). In it, early deviations by player i were punished via “Phase 3”:
Phase 3: Play i′s effective minmax profile. If j /∈ I(i) deviates early, start

Phase 4.
This opens the door to a profitable one-shot deviation — hence the given

strategies may not constitute a SPNE — as illustrated by a counterexample.
Consider the following 3-player stage game G, in which P1 chooses rows (T or
B), P2 chooses columns (` or r ), and P3 chooses matrices (L or R):

L
` r

T −1,−1, 0 1, 1, 0
B −1,−1, 0 0, 0, 0

R
` r

T 2, 2, 2 3, 3, 3
B 2, 2, 1 2, 2, 2

Players 1 and 2 earn the same payoff at every profile, and thus are affinely
equivalent. Player 1’s minmax payoff is−1 (achieved if he best-responds to (`, L)),

1See footnote 5 in Smith (1994) for this equivalent formulation of Wen (1994)’s definition.



A COMMENT ON SMITH (1995) 3

player 2’s minmax payoff is 0 (achieved if he best-responds to (B,L)), and so
they share an effective minmax payoff of 0, via the effective minmax profile
w̃1 = w̃2 ≡ (B, r, L).

In Smith’s construction, player 1’s punishment phase specifies playing w̃1 for
some number of periods, during which deviations by players 1 and 2 are ignored.
But observe that P1 himself is not myopically best-responding at w̃1, and so he
has a profitable one-shot deviation: play T instead of B. This raises his current-
period payoff from 0 to 1, with no future consequences.2

This issue is easily resolved with a two part adjustment to Smith’s Phase 3
(after an early deviation by player i): First, instead of playing i’s effective minmax
profile, play the solution wi to i’s effective minmax problem, namely, a profile wi

that minimizes maxj∈I(i) maxaj∈Aj ui(aj , w
i
−j). (In words, choose the profile wi

that minimizes the best that any affine twin of i gets by best-replying to wi; in
the counterexample, w1 = w2 = (B, `, L)). Second, deter Phase 3 deviations by
players in I(i) by threatening to restart Phase 3. This deterrent works because
profile wi has the property that the best any player in I(i) can earn by deviating
is his effective minmax payoff 0.

3. CORRECTED PROOF

We now provide Smith (1995)’s full strategies — with Phase 3 modified as
above — and prove that the adjusted strategies constitute a SPNE. Following
Smith, choose a target payoff vector u∗ ∈ F ∗. Fix a Nash decomposition into
player subsets Jg (g = 1, 2, . . . , h), along with the corresponding action profiles
eJg−1

and fJg−1
, and corresponding distinct (for players i ∈ Jg\Jg−1) Nash

payoff vectors y(eJg−1) of G(eJg−1) and y
(
fJg−1

)
of G

(
fJg−1

)
. Define cg ≡

mini∈Jg\Jg−1

∥∥y(eJg−1
)i − y(fJg−1

)i
∥∥. Let yg denote alternating between the

action profile yielding y(eJg−1
) (in even periods) and y(fJg−1

) (in odd periods).
We now construct a 5-phase strategy profile. The phase length variables —

namely q (Phase 3), r (Phase 4), and tg(q + r) (g = 1, 2, . . . , h, Phases 2 and
5) will be chosen at the end of the construction, along with the reward vectors
xj (∀j ∈ I) used in Phase 4. Early3 (late) deviations are those occurring up to
(after) period T − th(q + r)− (q + r).
Strategy Profiles.
1. (Main Path) Play (possibly via public randomization) a profile a yielding

the target payoff vector, u∗, until period T − th(q + r). After an early
deviation by i, go to Phase 3; after a late deviation by i ∈ Jg′ , go to
Phase 5.

2The first author’s original paper (Demeze-Jouatsa (2018)) noted further that in this game,
Smith’s strategies may not even yield a NE: If the target payoff vector holds P1’s payoff close
to his effective minmax, 0, then P1 will actually have an incentive to trigger his minmax phase
— where he’s able to earn 1 — as often as possible.

3So a deviation is “early” if there is still time to run Phases 3 and 4 before period T − th(q+
r) + 1, when Phase 2 begins.
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2. (Good Recursive Nash) For g = h, . . . , 1: Play yg in periods T − tg(q+r)+
1, . . . , T − tg−1(q+r). After a deviation by i ∈ Jg′ with g′ < g, start Phase
5. (On-path, this phase runs during the final th(q + r) periods).

3. (Adjusted Minmax Phase for i): Play wi for q periods, where wi solves i’s
effective minmax problem (rather than playing i’s effective minmax profile,
as in Smith).

• If any j /∈ I(i) deviates early, start Phase 4; if any j ∈ Jg′ deviates
late, start Phase 5 with i← j.

• [Addition to Smith’s construction] If any j ∈ I(i) deviates early, set
i← j and restart Phase 3.

Then set j ← i and start Phase 4.
4. (Reward Phase) Play xj for r periods. If any i deviates early, restart

Phase 3; if any i ∈ Jg′ deviates late, start Phase 5. Then return to Phase
1.

5. (Bad Recursive Nash) Play zg
′,i until period T − tg′−1(q + r). (If j ∈ Jg′′

deviates, where g′′ < g′, set g′ ← g′′ and i← j and restart Phase 5.) Then
go to Phase 2.

So along the equilibrium path, the sequence of action profiles is

a, . . . , a︸ ︷︷ ︸
T−th(q+r) periods

; yh, . . . , yh︸ ︷︷ ︸
sh(q+r) periods

; yh−1, . . . , yh−1︸ ︷︷ ︸
sh−1(q+r) periods

; . . . ; y1, . . . , y1︸ ︷︷ ︸
s1(q+r) periods

Since we next choose phase lengths such that th(q + r) doesn’t depend on T ,
payoffs converge to u∗ for T sufficiently large.

Phase Lengths and SPNE Verification
Let ρ be the largest gap between best and worst payoffs across all players in

G. For Phase 4, let x1, x2, . . . , xn be feasible payoff vectors such that xi � 0
∀i ∈ I, xii < xji ∀j /∈ I(i), xi = xj ∀ j ∈ I(i), and xii < u∗i ∀i ∈ I. (Such vectors
exist following Abreu et al (1994)).

Phase lengths are as follows:
• choose q (length of Phase 3) to deter one-shot deviations, namely so that

for all players i,

(3.1) ρ < q · xii

• choose r (length of Phase 4) to deter deviations by players j /∈ I(i) during
Phase 3: namely such that for all i and j /∈ I(i),

(3.2) ρ+ max
{

0, (q − 1) ·
(
u∗j − πj(wi)

)}
< r(xij − x

j
j)

• for the final recursive NE phase, the lengths are determined as follows:
For any number k, let ψg(k) be the least even number above 2kρ/cg, so
that that a player i ∈ Jg is willing to play k periods of any action followed
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by ψg(k) periods of yg, if deviations switch each yg to zg,i. Recursively
define

(3.3)

sh(m) = ψh(m) and (∀g = 1, 2, . . . , h−1) sg(m) = ψg(m+sg+1(m)+· · ·+sh(m))

Then set t0(m) = 0 and tg(m) = s1(m) + · · ·+ sg(m), for g = 1, 2, . . . , h.

To prove that the strategies form a SPNE, it suffices to prove that there are no
profitable one-shot deviations. We show that deviations are strictly unprofitable
at δ = 1, and thus remain unprofitable for δ sufficiently large.
• Late deviations. A one-shot deviation by player i ∈ Jg′ takes him immediately

to Phase 5, where they play zg
′,i until period T − tg′−1(q+ r), then resume

following Phase 2. So he gains at most ρ in each period between the
deviation and time T − tg′(q + r) (for a late deviation, there are at most
q+ r+ sh(q+ r) + sh−1(q+ r) + · · ·+ sg′+1(q+ r) such periods), but then
loses at least cg/2 in each of the sg′(q+r) periods between T −tg′(q+r)+1

and T − tg′−1(q+ r) (during which they switch from yg
′

to zg
′,i). By (3.3),

the loss strictly exceeds the gain. (This analysis applies to late deviations
by any player in Phases 1,3,4; to late Phase 2 deviations by players in Jg′
from yg (with g > g′); and to late Phase 5 deviations by players in Jg′′
from zg

′,i (with g′ > g′′). Remaining late deviations, by those already (by
construction) playing a myopic best response, are ignored).

• Early deviations in Phases 1 and 4. If i deviates, he gains at most ρ this
period, then play moves immediately to Phase 3 (followed by Phase 4 with
xi). Since xi is weakly worse for player i than any other Phase 4 vector
xj , and strictly worse than the Phase 1 vector u∗, the cost is at least q · xii
(he loses at least xii during each of the q minmax periods). By (3.1), the
deviation is unprofitable.

• Early deviations by non twins during Phase 3 (minmaxing i). Player j /∈
I(i) gains at most ρ in the current period, and then moves immediately to
Phase 4, where he gets xjj rather than the xij > xjj he would have gotten
without the deviation. Then returns to Phase 1, so can replace at most
(q − 1) periods of minmaxing i with payoff u∗j . By (3.2), the deviation is
unprofitable.

• Early deviations by twins during Phase 3 (minmaxing i). A one-shot deviation
by j ∈ I(i) raises his payoff in the current period from πj(w

i) to at best
his effective minmax, zero. But this restarts Phase 3, adding at least one
extra minmax period (at the expense of a future Phase 1 period), for a
cost of at least u∗j − πj(wi). Since u∗j > 0, the deviation is unprofitable.
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