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Abstract

We introduce a model of distracted learning mitigated by an optimal N -state memory
buffer. A decision maker (Dug) continuously updates his beliefs given an Ito signal
process. When the termination shock hits, he must choose a binary action, earning a
higher payoff if his action matches the binary state. When a distraction shock occurs,
he can only recall which one of N intervals (memory states) contained his belief when
the distraction shock hit. He maximizes his expected payoff over interval partitions of
[0, 1], and his post-distraction beliefs. Dug is optimally indifferent between memory states
at the threshold between memory states. His unoptimized value obeys smooth pasting;
optimal values are “super-smooth pasted”.

Dug is always harmed by distraction shocks, and gains at a termination shock if and
only if he is sufficiently certain of the state. His initial value rises in the number of memory
states and falls in the rate of termination shocks. Two memory states are sufficient to
secure the full information value as termination shocks become vanishingly rare.

We consider two extensions: allowing the DM to choose the optimal number of mem-
ory slots (demand for memory) or the optimal precision of the Ito process (demand for
information) given some increasing cost function.

*We thank Lones Smith for helpful suggestions throughout this project; as well as, seminar participants at
Penn State and the University of Maryland.



1 Introduction

Distraction has long been in the news, with agreement that smart phones and social net-

working have adversely impacted everything from educational outcomes1 to highway death

rates2 (up 25% since 2010). Many studies have found that distraction results in incomplete

learning, poor recollection, and reduced cognitive control.3 This paper introduces a simple

novel model of distraction that treats it as a constraint on rational Bayesian learning.

We merge finite state automata and standard Bayesian rational learning to isolate the

pure impact of distraction, not conflating it with other cognitive limitations. Specifically,

we assume that a fully rational decision maker, Dug,4 optimally learns about a low or high

true state (of the world) in continuous time, with the stochastic calculus model of Smith and

Moscarini (2001). Dug knows that he faces unpredictable distractions that disrupt his train

of thought. At those random moments, Dug forgets his precise posterior belief and reverts to

a finite state belief buffer, as explored in Wilson (2014). Loosely, the memory states act as

distraction insurance for the Bayesian rational Dug. What is the optimal design of this finite

state automaton? How does it impact behavior, and how much does it impede his learning?5

Dug designs a memory policy at time zero, which — along with his current posterior belief

(in the high true state) — dictates his belief after a distraction. Specifically, a memory policy

partitions beliefs [0, 1] into N memory states. Per usual, we assume these states are intervals.

The memory policy assigns a belief qn to each memory state n. Thereafter Dug continuously

observes a flow signal of the state, obscured by Wiener noise. Between distraction shocks, his

posterior belief in the high state adjusts continuously. Distraction shocks arrive exogenously

at a fixed rate, according to a Poisson process, whereupon Dug forgets the past history of the

signal process and distraction shocks, and only recalls his memory state n. When this arrival

rate vanishes, our model reduces to fully rational Bayesian learning. Post-distraction, Dug

resumes observing the signal process in continuous time, but now starting at the posterior qn.

At some exponentially distributed time, Dug must choose a binary action, and earns an

undiscounted terminal payoff that is positive if his action matches the state and zero if it does

not. A prior bias weakly favors matching the high state. He chooses his memory policy at

time zero to maximize his expected terminal payoff, perfectly forecasting the state conditional

distributions of terminal beliefs induced by his chosen memory policy.

1See, for example, Digital Distractions In Class Linked to Lower Academic Performance (2023).
2See, for example, Wikipedia: motor vehicle fatality rate in US by year.
3See, for example, Ophir, Nass, and Wagner (2009).
4Inspired by Dug, the golden retriever from Pixar’s Up (2009) with his squirrel distraction moments.
5Some recent studies have found that people can learn to mitigate distractions, even with uncertainty on

when they will hit: Brain, Interrupted.
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The design exercise is how to partition the belief space [0, 1] into memory states — a novel

feature not yet explored in the finite memory literature — and what belief to endow Dug

with in each memory state. Firstly, as in Wilson (2014), dynamically optimal beliefs should

be Bayesian consistent (Lemma 1) in the following sense. Loosely, if Dug awakes in a memory

state, aware that he has potentially been transitioning among memory states for an arbitrarily

long time span, he should arrive at the Bayesian posterior belief qn for that memory state. To

characterize such beliefs, we solve for the state conditional Markov transition matrix between

memory states at consecutive distraction shocks. Given this transition matrix, we solve for

the relative frequency with which distraction shocks hit in each memory state. Applying

Bayes’ rule to these relative frequencies yields a necessary condition for Bayesian consistent

beliefs. We show that these beliefs are unique for any interval partition (Proposition 2). Our

proof is constructive, and gives an efficient algorithm for computing numerical solutions.

Optimality entails a novel second ingredient in our model. Fixing the post-distraction

beliefs, rational Dug faces an optimal control exercise when choosing his interval policy in

order to maximize his expected payoff. Dug has a Bellman value as a function of his current

belief in each memory state. Within each memory state this value function is analogous to

undistracted learning: It is continuously differentiable, and twice continuously differentiable

except, perhaps, at the thresholds separating memory states. Also, it is locally strictly convex

in his current belief inside each memory state: Incremental information has strictly positive

value, even with a suboptimal interval policy. and contingent on a true state, value func-

tions increase in Dug’s confidence in that state. Proposition 1 derives an intuitive necessary

condition for an optimal interval policy, assuming Bayesian consistency: At a memory state

boundary, Dug is indifferent between recalling either memory state should distraction strike

at that moment. Lemma 4 establishes that for any memory policy this indifference condition

is equivalent to continuity of the second derivative of the unconditional value function at the

boundary between memory regions. Intuitively, this high order contact or super smooth past-

ing condition ensures that the value of information that Dug extracts from the signal process

is continuous. Notably, neither value matching nor smooth pasting are optimality conditions,

as both are automatically met for any interval policy. Intuitively, Dug’s future action is only

impacted after the arrival of a distraction or decision shock, with no discontinuity induced

by changing memory states before this.

The interplay of rational and distracted Dug is best seen in rational Dug’s dynamic opti-

mization. First, every distraction shock is formally a capital loss to him. Next, the decision

shocks that terminate the learning model are capital gains if and only if he is sufficiently
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certain of the true state, since at these junctures he rationally fears that a distraction with

destroy his near certainty, and replace it with the less certain insurance belief of the memory

state. In other words, this is a unique learning model in which the Bayes rational value falls

below the myopic payoff (Proposition 4).

Dug’s initial value is strictly increasing in the number of memory states, and strictly

decreasing in the rate of arrival of termination shocks, and the noise in the signal process

(Proposition 5). We solve for the limits of his payoff in all exogenous parameters (Proposi-

tion 6). One surprising result emerges: Two memory states are sufficient for Dug to secure

his full information value as the termination shock arrival rate converges to zero.

With two memory states, the optimal threshold between them is fully characterized by

Bayesian consistent beliefs along with indifference at the boundary. This threshold rises as

matching the high state becomes relatively less important, or as the high state becomes more

likely; either way, the post-distraction beliefs in both memory states rise. As decision shocks

become more frequent relative to distraction shocks, the optimal policy adjusts so that the

post-distraction beliefs in the two memory states move closer together.

In an extension inspired by Smith and Moscarini (2001), we consider the demand for

memory and the demand for information. For the former, we let Dug choose the number of

memory states at time zero at some additive cost. We show that the demand for memory

is robustly non-monotonic in the rate of distraction shocks. In all computed examples, the

demand for memory is hump-shaped in the rate of distraction shocks for any convex cost of

memory. For the demand for information, we instead allow Dug to choose the precision of

the noisy signal at time zero. We find that the demand for precision is also robustly non-

monotonic. In computed examples, Dug chooses more precision as distraction shocks become

more common when precision is already high (i.e., when precision is cheap), but chooses

worse information when distraction shocks become more common with costly precision.

Literature Review. There is a large literature on both finite automata and continuous

Bayesian learning. We think ours is the first paper to merge the two. The most closely related

paper is Wilson (2014), which also explores the optimal design of an automaton to process

information about a binary state. But in that paper, both time and information were discrete:

Each period, the DM observed one of finitely many signal realizations, updated her memory

state accordingly, and retained no other information into the next period. In this paper, Dug

continuously updates his beliefs until a distraction shock hits, at which point he loses all

information beyond the current memory state. Both papers characterize the optimal use of
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finite memory states. But in the discrete setup, this required carefully randomized transitions

and was tractable only when the chance of the information terminating was very small. In

this paper, Dug more simply chooses the cutoff beliefs for transitions into each memory state.

This provides enough structure to make the problem tractable for all parameters, and delivers

comparative statics that were not possible in the discrete setup.

Both papers find that ex ante optimal memory policies are incentive compatible, according

to the modified multi-self consistency notion introduced by Piccione and Rubinstein (1997).

Namely, the problem can be reformulated as a multi-self game, with a new self controlling

behavior each period in the discrete setting, and, in this paper, after each distraction shock.

Under an ex ante optimal memory policy, no “self” can gain with a one-shot deviation, pro-

vided that they hold Bayesian (given available info) beliefs. Here, this means that at the

cutoff belief to switch from memory state n to n+1, Dug is indifferent between the continu-

ation payoffs he would obtain in these states (his “post-amnesia payoffs”) were a distraction

shock to hit. This is much stronger than continuity of his value function at the cutoffs (which

also holds), and – since the post-amnesia payoffs for N states are straightforward to compute

as the solution to N equations – this facilitates finding the optimal cutoffs .

Many papers have explored using finite-state automata to process information. In the

pioneering contribution, Hellmann and Cover (1970) characterize ϵ-optimal automata for dis-

tinguishing between two hypotheses after an infinite sequence of signal observations, finding

that the two memory states with the most extreme beliefs were optimally sticky, and that as

the signal becomes perfectly informative, two memory states suffice to learn the truth. Chat-

terjee and Hu (2023) explore a similar set-up, focusing on approximately optimal heuristics

based on ignoring noisy signal realizations and canceling out opposing ones. A related paper

by Jehiel and Steiner (2020) study a memoryless agent (essentially a 1-state automaton) who

can choose each period whether to acquire another signal or make a decision, and found that

this generates biases such as confirmation bias and a salience effect.

There is also a growing literature on applications of bounded memory. Dow (1991) ex-

plores sequential search for the lowest price, assuming the DM can only recall how he catego-

rized past prices (not their exact values), but could design the categories optimally. Lorrechio

and Monte (2023b) studies information design with constrained capacity, where an infinite

sequence of myopic agents choose whether to invest in a project that is either Good or Bad,

their payoffs provide information to a designer, and the designer communicates one of finitely

many ratings to future agents. Ratings are updated after each observation using a stochastic

transition rule, and thus are analogous to memory states. In a follow-up paper, Lorrechio

4



and Monte (2023a) consider an expert who fears developing a bad reputation (as in Ely and

Valimaki (2003)) for always recommending high-cost actions, and who thus has incentives to

recommend lower-cost actions than are actually optimal. They show that limiting informa-

tion to a finite rating system can mitigate this problem. Relatedly, Ekmekci (2011) shows that

restricting information to a finite grid can permit experts to permanently maintain “good”

reputations (whereas Cripps, Mailath, and Samuelson (2004) showed good reputations are

unsustainable in a world with unlimited information). Compte and Jehiel (2015) explored

games played between players with finitely many mental states for tracking opponent behav-

ior and carrying out decisions. Recently, some experimental papers have looked at the extent

to which automaton models capture complexity constraints. Liu and Miao (2025) explores

a sender-receiver game where a biased sender chooses when to stop the flow of truthful in-

formation. The receiver has a finite-state automaton to process information, and designs it

strategically both to maximize his own payoff and to control the sender’s information flow.

More broadly, we join a large literature on complexity costs and constraints. Much of

the literature builds on the rational inattention model of Sims (2003), with more recent

contributions in Matejka and McKay (2015) and Steiner, Stewart, and Matejka (2017).

In these papers, the DM chooses both what to learn about, and how much to learn, given

information costs proportional to its reduction in uncertainty. Fudenberg, Lanzani, and

Strack (2017) study selective learning, where the DM recalls only a subset of experiences,

but forms beliefs assuming that what he recalls is all that occurred.

There is a large literature on learning in continuous time. Karatzas (1984) solves for

the optimal policy in a continuous time bandit model, where the state of each arm follows

an Ito diffusion when actively engaged. Bolton and Harris (1999) consider a multi-agent

generalization with positive learning externalities. We adopt the single agent, binary-state,

binary-action, continuous time learning model from Smith and Moscarini (2001), but with a

fixed experimentation level. Fudenberg, Strack, and Strzalecki (2018) consider a continuum

state, binary action model with endogenous stopping with a constant flow cost of information.

2 The Model

We study how a rational risk-neutral decision maker (Dug) optimally designs a finite state

automaton, to mitigate the information loss from random distractions that interrupt his

continuous time learning.

Dug is uncertain of the true state of the world θ, fixed for all time at either H or L. His
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prior likelihood ratio favoring H is µ. Eventually, at Poisson rate δ > 0, a decision shock

terminates the problem. Dug must then immediately choose a one-time action, H or L: He

earns payoffs π > 0 if he matches state L, Π > 0 if he matches state H, and zero otherwise.

Thus action H is optimal iff his terminal belief on state H exceeds p̂ ≡ π/(π +Π). There is

no discounting, and we assume WLOG that the prior bias favors action H, i.e. µΠ ≥ π.

The model takes place in continuous time t ∈ [0,∞]. Until the decision shock hits, Dug

observes the scalar signal process S(t), obscured by Wiener noise W (t):

dS = sθdt+ σdW (1)

where sH = 1 = −sL, and σ−1 > 0 is the precision of the signal. As shown in Bolton and

Harris (1999), while Dug observes (1), his unconditional beliefs p(t) evolve according to:

dp = 2σ−1p(1− p)dW (2)

At Poisson rate α > 0, Dug is hit by distraction (aka amnesia) shocks, and this erases

all but a summary statistic that Dug designs as follows: He has N > 0 available memory

states. Before learning begins, he partitions the belief space [0, 1] into N distinct subsets,

transitioning to memory state n whenever beliefs drift into the nth subset. He also designates

an initial memory state n0, and assigns a belief qn, namely a posterior on the high state of

the world, to each memory state n. We restrict to interval policies I : [0, 1] → {1, 2, . . . , N},
described by a sequence of thresholds 0 ≡ p0 ≤ p1 ≤ · · · ≤ pN−1 ≤ pN ≡ 1.6 Between

distraction shocks, Dug is a rational Bayesian, and keeps track of both his exact belief p(t) at

every time t, and also the memory state that contains it, i.e. n with p(t) ∈ [pn−1, pn]. When

a distraction shock occurs, he loses all information beyond the current memory state n and

its associated belief qn. Let M be the space of such memory policies (q,p) (where q is the

vector of post-amnesia beliefs qn and p the vector of interval policy cutoffs pk).

As we show in the next section, any memory policy implies a unique cdf over terminal

beliefs in each state, Gθ(·|(q,p)). Dug wishes to maximize the associated expected terminal

payoff, namely 1/(1 + µ) times the following value:

πGL(p̂|(q,p)) + µΠ(1−GH(p̂|(q,p))) s.t. p(0) = qn0 (3)

6Dow (1991) argued that interval policies are informationally optimal. Although this was not in a hidden
state Bayesian world, interval policies are intuitively most informative in the sense of Blackwell (1953).
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3 Preliminary Analysis and the Evolution of Beliefs

We now describe the evolution of beliefs: first continuously, between amnesia shocks, and

then discretely as Dug transitions from one memory state to the next.

A. Forecasting Beliefs at the Next Shock. It is convenient to work with the log likeli-

hood ratio ℓ(p) ≡ log(p/(1− p)). We show in Appendix A that it obeys the following linear

homogeneous Ito process conditional on the state θ:

dθℓ = 2sθσ
−2dt+ 2σ−1dW (4)

The cdf over future beliefs is well known for this case:7 Given current value ℓ0, the change in

the log likelihood ratio ℓ−ℓ0 at time t is normally distributed with mean 2sθtσ
−2 and variance

4tσ−2. Using this and the fact that the decision and amnesia shocks follow independent

Poisson processes, we show in Appendix A that the probability that the change ℓ − ℓ0 is at

most x when the next amnesia shock hits is as follows in state H:

FH(x) =

 1− 1+ξ
2ξ e

x(1−ξ)
2 if x > 0

ξ−1
2ξ e

x(ξ+1)
2 if x < 0

for ξ ≡
√
1 + 2(α+ δ)σ2 (5)

And by symmetry, the cdf over log likelihood ratio changes in state L is FL(x) = 1−FH(−x).
Since amnesia and decision shocks are independent, FH is also the cdf over ℓ− ℓ0 at the next

decision shock, conditional on it hitting before the next amnesia shock.

The amount of learning that transpires between shocks is fully determined by, and falling

in, ξ, which is a monotone function of the scaled noise, i.e. the variance of the signal process

multiplied by the arrival rate of shocks (termination plus distraction).

B. The Conditional Frequency Distribution over Memory States. We now derive

the long-run distribution over memory states for memory policy (q,p). Let λθn,k(q,p) be the

chance of a transition from memory state n to memory state k between adjacent amnesia

shocks, conditional on: (a) state θ, (b) no intervening decision shock, and (c) assuming post-

amnesia belief qn in state n. Between shocks, Dug is engaged in standard Bayesian rational

learning, and so, noting that the cdf F θ over beliefs at the next amnesia shock is independent

7See Example 2 on page 217 of Karlin and Taylor (1981).
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of the memory policy, we have:

λθn,k(q,p) = F θ(ℓ(pk)− ℓ(qn))− F θ(ℓ(pk−1)− ℓ(qn)) (6)

Given these transition chances, the conditional distribution over memory states after t

amnesia shocks, ρθ,t = (ρθ,t1 , . . . , ρθ,tN ), obeys the difference equation (suppressing p and q):

ρθ,t = λθρθ,t−1 (7)

Now let η ≡ δ
α+δ denote the chance that a decision shock occurs before the next amnesia

shock, and let Λθ be the matrix with (i, j)th entry (1−η)λθj,i. With ρ0 the initial distribution

(ρ0n0
= 1 in both states θ = H,L), iterate (7) to obtain:8

ρθ = ηρ0 + η(1− η)ρθ,1 + η(1− η)2ρθ,2 + . . . = η(I − Λθ)−1ρ0 (8)

The vector ρθ given by (8) is the frequency distribution for memory states across amnesia

shocks given θ, and thus, ρθn is the chance that Dug will be in memory state n at the final

amnesia shock prior to termination. We can use ρθ both to compute his payoff (from (3)),

and also to determine the Bayesian beliefs q consistent with a given interval policy p.

C. Bayesian Consistent Beliefs. A Bayesian observer who knows the memory policy,

and that Dug just experienced a distraction shock in memory state n, would conclude that

Pr[θ = H] = ρHn /(ρ
H
n + ρLn). Thus, we call beliefs Bayesian consistent if they obey the

following fixed point equation:

qn
1− qn

= µ

(
ρHn
ρLn

)
= µ

[(I − ΛH(q,p))−1ρ0]n
[(I − ΛL(q,p))−1ρ0]n

∀ n (9)

From Wilson (2014), this captures the fact that if Dug updates knowing he potentially has

been wandering between memory states for an arbitrarily long period of time, he would arrive

at the same posterior in memory state n as if he just accepts the belief qn. But here there is

a critical complication that did not arise in the discrete model. There, the DM transitioned

based on signal observations, so transition chances were independent of his beliefs. Here,

Dug instead transitions when his belief drifts into a new interval between shocks, and so

the chance that this happens depends on his belief at the last shock. That is, Bayesian

8This part is identical to Wilson (2014), just counting amnesia shocks instead of discrete time periods, and
with η the chance of termination before the next amnesia shock.
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consistency demands that the beliefs q we use to compute transition chances and hence ρθ,

agree with those we compute based on long-run frequencies ρHn /ρ
L
n . We prove in Section 4

that equation (9) indeed has a unique solution q for any interval policy p.

D. Reformulating Dug’s Objective Function. Let Vθ(q,p) denote the expected payoff

starting at time zero, conditional on state θ. To compute Vθ, first let wθ
n be the expected

payoff starting just after an amnesia shock in memory state n given that the decision shock

hits before another amnesia shock:9

wH
n = Π

(
1− FH

(
log

(
π(1− qn)

Πqn

)))
and wL

n = πFL

(
log

(
π(1− qn)

Πqn

))
(10)

With this, recalling that ρθn is the chance that Dug is in memory state n when hit by the

final amnesia shock before termination, we can rewrite his objective function in (3) as:

µVH(q,p) + VL(q,p), where Vθ(q,p) =
∑
n

ρθnw
θ
n (11)

Finally, we calculate Dug’s post-amnesia payoffs, which we will use to determine the

optimal interval policy. Let νθn be the expected payoff immediately following an amnesia

shock in memory state n, given θ, which are the unique fixed points to the contraction

mapping:

Tνθn = ηwθ
n + (1− η)

∑
k

λθn,kν
θ
k (12)

In other words, starting the moment after a distraction shock in memory state n, Dug an-

ticipates that either a decision shock comes next (chance η) and the value is wθ
n, or another

distraction shock hits next (chance 1− η) and his rational learning takes him to the memory

states with the computed chances in (6).

4 Optimal Memory Policies

We now characterize optimal memory policies. We first highlight that, unlike in the existing

discrete-time automata models, Dug’s objective function in (11) depends directly on his post-

distraction beliefs q, since these influence both the long-run distribution ρθ from (8) and the

payoffs wθ
n from (10). One could imagine that if Dug could freely choose the beliefs attached

9This is the payoff from matching the state θ, multiplied by the chance that between the final amnesia
shock (in memory state n) and the decision shock, Dug’s belief likelihood ratio drifts from qn/(1− qn) above
the threshold to choose action H when θ = H, or below this threshold when θ = L.
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to his memory states, he might deviate from Bayesian consistency. But we find that this is

in fact not optimal:

Lemma 1 In an optimal memory, beliefs are Bayesian consistent, i.e. obey (9).

It is intuitive that optimal beliefs are Bayesian. After all, why would Dug want to endow

his future self with beliefs that do not optimally condition on all available information?

The next result characterizes optimal interval thresholds p, finding that Dug wants to

transition to the memory state with the highest expected post-amnesia payoff:

Proposition 1 (FOCs for Interval Thresholds) Fixing Bayesian consistent beliefs q,

pnν
H
n + (1− pn)ν

L
n ⋚ pnν

H
n+1 + (1− pn)ν

L
n+1 ⇒

∂V(p,q)
∂pn

⋚ 0

The optimal threshold pn leaves Dug indifferent between his expected post-distraction payoffs

in memory states n and n+ 1:

pnν
H
n + (1− pn)ν

L
n = pnν

H
n+1 + (1− pn)ν

L
n+1 (13)

The memory states act as insurance for Dug. If a distraction shock were to hit when

rational Dug is exactly indifferent between memory states, he would secure identical payoffs

from exercising either memory state insurance. This relates to existing results on incentive

compatibility of optimal policies.10 Namely, viewing Dug as a new “self” after each amnesia

shock, this says that he cannot improve his post-amnesia payoff with a one-shot deviation.

The slight difference11 is that Dug’s post-distraction payoff differs from his continuation payoff

at the time he transitions, since a distraction has not yet happened at this point. But since

the signal process, learning between shocks, and the arrival rate of shocks are independent

of the memory policy, the interval cutoffs only impact the mapping from current beliefs to

post-amnesia beliefs.

The proof of this result (in Appendix B) shows more strongly that Dug could not achieve

any higher value even if he could condition his interval policy on where amnesia last struck,

thus potentially associating each memory state n with a different vector p of thresholds. All

of Dug’s post-amnesia selves would choose the same vector of thresholds.

10Piccione and Rubinstein (1997) first formulated this modified multiself consistency notion of incentive
compatibility, and established it as an implication of ex ante optimality.

11Our proof is necessarily more involved. The first step is standard, showing that the derivative of Dug’s
payoff in a given transition chance is proportional to the continuation payoff gain from this transition. But
Dug doesn’t directly choose transition chances: He chooses thresholds, each of which impacts many transition
chances, along with indirectly affecting payoffs through changes in post-amnesia beliefs.
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A memory policy is interior if it uses every memory state, i.e. 0 < p1 < · · · < pN−1 < 1.

We use the first Proposition 1 result to establish (Appendix B.1) that optimal memory policies

are interior; and thus, that Dug’s payoff strictly increases in the number of memory states.

Corollary 1 Optimal memory policies are interior, so Dug’s value strictly increases in N .

Finally, we establish that Bayesian consistent beliefs are well-defined. As explained fol-

lowing (9), this is complicated by the fact that we need to know Dug’s beliefs to determine his

long-run distribution ρθ over memory states, and in turn need this distribution to compute

beliefs. Thus, the Bayesian consistent belief vector q is a fixed point rather than a simple

formula. An additional complication is that existing papers have focused on very small ter-

mination chances, where jumps to non-adjacent memory states were suboptimal (so that the

transition matrix was mostly zeros). But Dug can transition to any memory state between

amnesia shocks while he is a Bayesian rational learner. Nonetheless, our model has enough

structure to compute beliefs:

Proposition 2 (Post-Amnesia Beliefs) There exist unique post-amnesia beliefs (qn)
N
n=1

satisfying (9) for any memory policy p. Moreover, these post-amnesia beliefs and the asso-

ciated conditional distributions over memory states ρθ are continuous in memory thresholds

pn; and for all n, the belief qn lies inside the memory state n interval [pn−1, pn].

Our proof in Appendix C is constructive, with a recursive algorithm that pins down unique

beliefs (q1, q2, . . . , qN ) for any interval policy p. Our recursion solves for all qn “from the

outside-in.” The probability mass leaving any block of memory states {1, 2, ..., n} must match

the probability mass entering this block, but we use (6) to show that the latter probability

has the same likelihood ratio (in state H compared to L) from any memory state k > n. This

permits a formula for beliefs in state n < n0 that does not depend on beliefs in higher memory

states. A symmetric algorithm solves from the top down for beliefs in memory states above

n0, and finally qn0 depends on the average belief in states above and below n0. Continuity

follows trivially from the continuity of every implicit function in our recursion, along with

continuity of the transition chances (6).

5 Illustrative Special Case with N = 2 Memory States

A. Optimality Conditions and Comparative Statics. When N = 2, Dug chooses a

single threshold belief p1 along with beliefs q1 and q2 in his two memory states. Fundamen-

tally, this example will reduce to solving three equations in these three unknowns. We now

11



see how these equations arise. Since the prior bias favors state θ = H, i.e. µΠ ≥ π, Dug

should start in memory state 2, since this biases the memory toward action H.

Using (11), Dug wishes to maximize
∑2

n=1(µρ
H
n w

H
n + ρLnw

L
n ), with wθ

n given by (10).

By (8), the probabilities ρθn of memory states n = 1, 2 at the final amnesia shock are steady-

state frequencies of a perturbed Markov process, where Dug jumps to memory state n0 = 2

with chance η, otherwise transitions according to λθi,j :

ρθ1 =
(1− η)λθ2,1

η + (1− η)λθ1,2 + (1− η)λθ2,1
and ρθ2 =

η + (1− η)λθ1,2

η + (1− η)λθ1,2 + (1− η)λθ2,1
(14)

But by (5) along with (6), transition chances in θ = H (swap ξ + 1 and ξ − 1 for θ = L)

from Dug’s rational learning between shocks are as follows, with P1 ≡ p1/(1 − p1) and

Qn ≡ qn/(1− qn):

λH1,2 =
ξ + 1

2ξ

(
Q1

P1

) 1
2
(ξ−1)

and λH2,1 =
ξ − 1

2ξ

(
P1

Q2

) 1
2
(ξ+1)

(15)

Notice that Dug’s payoff directly depends on his post-amnesia beliefs Q1 and Q2, as the

transition chances (15) do, thus so does ρθn from (14) and wθ
n from (10). So conceivably,

something other than Bayes consistency could be optimal. But our main technical results

in Lemma 1 and Proposition 1 find two necessary conditions for optimality. First, Bayesian

beliefs: Dug’s beliefs are Bayesian consistent (obey (9)) if Qn = µρHn /ρ
L
n for n = 1, 2. In

Appendix D, we simplify this as follows, where x (the root of function f in (38)) depends

only on parameters η and ξ:

Q1 = P1x, and

(
Q1

Q2

) ξ−1
2 µ−Q1

Q2 − µ
=

η

1− η

ξ − 1

2
x

ξ−1
2

(
ξ + 1

ξ − 1
− x

)
(16)

Second, Dug must be indifferent between expected post-amnesia payoffs in memory states 1

and 2 at the threshold between them. From Appendix D, this is:

µ =
ξ + 1

ξ − 1

Π

π
Q1Q2

1− ξ+1
2ξ

(
ΠQ1

π

) ξ−1
2 − ξ−1

2ξ

(
π

ΠQ2

) ξ+1
2

1− ξ−1
2ξ

(
ΠQ1

π

) ξ+1
2 − ξ+1

2ξ

(
π

ΠQ2

) ξ−1
2

 (17)

While these conditions are only necessary, we prove in Appendix D that they have a

unique solution, and thus are also sufficient to fully characterize the N = 2 optimum. We

also derive the following comparative statics:

12
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Figure 1: Optimal Two State Memory. The left graph depicts the optimal interval cutoff
p1 as a function of the payoff ratio π/Π ≤ 1 for N = 2 and µ = σ = α = δ = 1. The right
graph depicts the optimal post-amnesia beliefs q1 and q2 for µ = 1, π/Π = 1/2, and ξ = 2.

Proposition 3 (Sufficiency and Comparative Statics) When N = 2, the Bayesian con-

sistency (16) and indifference (17) equations are necessary and sufficient to determine the

optimal threshold p1. This threshold rises with π/Π and with µ. As η rises, the associated

optimal beliefs move closer together, with Q1 rising and Q2 falling.

The comparative static for π/Π is intuitive; as this ratio rises, i.e. matching the high state

becomes relatively less important, the high memory state interval shrinks (p1 rises). The µ

comparative static may seem counterintuitive, finding that this also happens as the high state

becomes more likely. The countervailing factor is that higher µ raises post-amnesia beliefs in

both memory states, which make transitions into memory state 2 more likely. The net impact

is indeed more time in memory state 2, via a threshold that rises, but proportionately less

than µ. To see this, consider increasing µ, and as a thought experiment, also increase π/Π

so as to hold constant the overall bias β ≡ µΠ/π. Notice that with β unchanged, both (16)

and (17) remain satisfied if we hold constant Q1/µ, Q2/µ, and P1/µ. This leaves unchanged

the transition chances in (6), and thus also the relative frequencies of memory states 1 and

2. But now, reduce π/Π to its actual value; this reduces the threshold, by Proposition 3,

increasing the frequency of memory state 2. In the end, as is intuitive, Dug spends more time

in the high memory state, and post-amnesia beliefs rise but by proportionally less than µ.

We highlight another way our continuous model differs from the literature. With discrete

learning, there is little gain to asymmetry in both the prior µ and the action bias Π/π: Both

simply affect the relative importance of matching states θ = H,L, with identical impacts.

But for Dug, the action bias also affects the terms wθ
n from (10) (which affect his payoff (11)),

while the prior impacts Bayesian consistent beliefs. Thus they have different effects, even

holding fixed the overall bias β towards the high state. In particular, consider doubling µ and

halving Π. While we show in Appendix C that for a given interval policy, only Qn0 depends

13



directly on µ, we just argued that the optimal policy adjusts so that all likelihood ratios rise

proportionately with µ.

Imagine that Dug is driving, but prone to distraction shocks (looking at his iPhone). In

the Low state, there’s no traffic and no evasive action needed (doing nothing gains π > 0

compared to needlessly slamming on the brakes). In the High state, a random decision shock

in the form of stopped traffic will arise, and Dug gains a large amount Π > 0 by taking action

to avoid crashing. In the discrete literature, more significant crash damages (large Π) and

higher chances of stopped traffic (large µ) have symmetric impacts. But for Dug, doubling µ

while halving Π both doubles his perceived accident risk in both memory states, and doubles

the threshold to switch to his more vigilant memory state. The fraction of time spent in his

“high-caution” memory state 2 remains unchanged, but he’s more cautious in both.

6 Values as a Function of Current Beliefs

A. Conditional Values. We now explore Dug’s continuous time value as a function of

beliefs, given true state θ. Fix an interval policy p, and let λθn,k be the memory state

transitions from (6) assuming Bayesian consistent post-amnesia beliefs.

Define the log-likelihood memory state thresholds ℓn = log(pn/(1 − pn)), the cutoff be-

tween optimal terminal actions ℓ̂ ≡ log(p̂/(1 − p̂)) = log(π/Π), and the log prior likelihood

ratio µ̂. Let V θ(ℓ) be the expected payoff given current log-likelihood ratio ℓ conditional on

state θ. Given post-amnesia values νθn (from (12)), these conditional values obey:

V L(ℓ) = ηπFL(ℓ̂− ℓ) + (1− η)
∑
n

λLn(ℓ)ν
L
n (18)

V H(ℓ) = ηΠ
(
1− FH(ℓ̂− ℓ)

)
+ (1− η)

∑
n

λHn (ℓ)νHn (19)

where we overuse notation in defining the chance that the next shock hits in memory state

n given current log-likelihood ratio ℓ as

λθn(ℓ) ≡ F θ(ℓn − ℓ)− F θ(ℓn−1 − ℓ)

Lemma 2 Given any interval policy, Dug’s expected payoffs (νθ, V θ) are the unique solutions

to (12), (18), and (19) evaluated at the unique post-amnesia beliefs q satisfying (9) with

associated transitions λθ given by (6). These values are C1 everywhere, C2 on each open

interval (ℓn−1, ℓn), and strictly monotone with (νL, V L) decreasing and (νH , V H) increasing.
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Proof: We prove the case of θ = L; the logic for θ = H is symmetric. The fact that V L is

C1 everywhere and C2 on each open interval (ℓn−1, ℓn) follows from (18) and the fact that

F θ(x) from (5) is everywhere C1 in x (even at x = 0), and C2 for x ̸= 0.

To see that νLn strictly decreases in n, it suffices to show that this property is preserved

by the operator T in (12). To this end, recall that post-amnesia log likelihood ratios are

ordered ℓ1 < ℓ2 < · · · < ℓN . This implies that the conditional distribution over memory

states k at the next amnesia shock, λLn,k, from (6), is first order increasing in n. In addition,

wθ
n from (10) strictly decreases in n. Thus TvLn is strictly decreasing in n for any vector of

post-amnesia values that are non-increasing in n. Thus, the fixed point post-amnesia values

obey:

νL1 > νL2 > · · · > νLN (20)

To show that V L is strictly decreasing, we differentiate (18) and rearrange to discover:

(V L)′(ℓ) = = −ηπfL(ℓ̂− ℓ)− (1− η)

N−1∑
n=1

fL(ℓ(pn)− ℓ)
(
νLn − νLn+1

)
< 0

□

B. Unconditional Values. Define Vn(p) ≡ pV H(ℓ(p)) + (1− p)V L(ℓ(p)) as Dug’s uncon-

ditional payoff when his belief p is in memory state n. This obeys the following Hamilton-

Jacobi-Bellman (HJB) equation, where u(p) = max{pΠ, (1 − p)π} is his terminal payoff at

belief p:

0 = δ (u(p)− Vn(p)) + α
(
pνHn + (1− p)νLn − Vn(p)

)
+ 2

p2(1− p)2

σ2
V ′′
n (p) (21)

The RHS of (21) is the expected drift in the value: The first term reflects the δ chance that

the problem ends, replacing value Vn(p) by terminal payoff u(p). The second term reflects

the α chance of a distraction shock, in which case the value reverts to post-amnesia payoff

pνHn + (1 − p)νLn . And the final term reflects expected drift in his value due to volatility of

the Gaussian learning process. This rearranges to:

Vn(p) = ηu(p) + (1− η)νn(p) +
2p2(1− p)2

(α+ δ)σ2
V ′′
n (p) (22)

The sum of the first two terms is Dug’s expected value if his beliefs never change, assuming

terminal reward νn(p) following a distraction shock, and the final term is the normalized flow

value of the information he extracts from observing the signal process (1).
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Figure 2: Value Functions. Left: conditional value functions V θ(ℓ(p)) given an optimal
memory policy. Right: the optimal unconditional value V ∗(p), the expected terminal payoff
u(p), and the value with no distractions (red). Here: Π = N = 2 and π = α = δ = σ = 1.

Lemma 3 (Smooth Pasting) For any memory policy, the unconditional value V is C1

everywhere, and C2 and strictly convex on each open interval (pn, pn−1).

Proof: That V is C1 everywhere and C2 on each (pn, pn−1) follows from V L and V H each

C1 (Lemma 2). We prove strict convexity in Appendix E. □.

C. Smooth and Super Smooth Pasting. Rephrasing Lemma 3, for any interval policy,

the unconditional value function obeys value matching and smooth pasting across all barri-

ers. In other words, unlike in standard stochastic control models with a linear state space,

e.g., Dixit (2013), smooth pasting is not an optimality condition.12 It simply follows from

the fact that cdf F θ in (5) is continuous and differentiable, even at zero, and thus, so are

transition chances between amnesia shocks. Intuitively, the difference from standard control

models is that Dug doesn’t immediately take an action as he crosses the boundary. He must

wait for nature to offer him another shock, and so switching memory states doesn’t introduce

any discontinuities into Dug’s eventual action choice.

This begs the question of what is the optimality condition. By Lemma 3, the unconditional

value function Vn is C2 on open intervals (pn−1, pn). Super Smooth Pasting (SSP) imposes

continuity of the second derivative at the boundary between memory states:

SSP: V ′′
n (pn) = V ′′

n+1(pn) (23)

By (22) SSP is equivalent to continuity of the value of information at pn.

12Potentially, the value function could violate these conditions with a non-interval policy, or an interval
policy where the vector of thresholds varies with where amnesia last struck. As noted below Proposition 1,
we considered the latter generalization in Appendix B and proved that it does not help
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It turns out that SSP is equivalent to Dug’s indifference between being hit with a distrac-

tion shock just to the left or right of the boundary between memory regions.

Lemma 4 (Super Smooth Pasting) SSP obtains at threshold pn if and only if indiffer-

ence condition (13) obtains.

Proof: Substitute equation (22) into Vn(pn) = Vn+1(pn) (by continuity) to get:

(1− η)νn(pn) +
2p2n(1− pn)

2

α+ δ
V ′′
n (pn) = (1− η)νn+1(pn) +

2p2n(1− pn)
2

α+ δ
V ′′
n+1(pn)

and thus, Dug is indifferent across memory states n and n+1 at threshold n+1, if and only

if his instantaneous value of information is continuous at pn. More generally:

νn(pn) ⋛ νn+1(pn) ⇔ V ′′
n (pn) ⋚ V ′′

n+1(pn) □

Proposition 1 established that optimality implies Dug’s indifference at the thresholds pn.

Thus, SSP is a necessary optimality condition expressed in terms of the unconditional value.13

D. Distraction and Decision Capital Gains and Losses. Let V ∗
n (p) be the optimized

unconditional value at belief p in memory state n, namely Vn(p) given an optimal memory

policy. WE now explore how this value is affected by the shocks Dug experiences. Distraction

shocks are a capital loss, erasing knowledge that Dug has accumulated. But more surprisingly,

decision shocks can actually be a capital gain when Dug is at his most confident:

Proposition 4 Distraction shocks are always a capital loss: for all memory states n and

beliefs p, V ∗
n (p) ≥ pνHn + (1 − p)νLn . But decision shocks are not: There exist p < p1 and

p > pn−1 such that V ∗(p) > u(p) for p ∈ (p, p), and (b) u(p) > V ∗(p) for p /∈ [p, p].

The proof is in Appendix E. For beliefs sufficiently close to 0 and 1, Dug would strictly

benefit if he could stop learning and take immediate action: His myopic payoff u(p) exceeds

his value from continuing. He rationally forecasts that his future distraction shocks will harm

him, and potentially pull him far from his current strong belief.14 Figure 2 illustrates many of

our results for value functions: namely, the monotonicity of conditional values V θ (Lemma 2),

13This is in contrast to Dumas (1991), where smooth pasting and super smooth pasting were joint optimality
conditions for the barrier in a regime shift model. Notice that while F θ from (5) is C1, making value matching
and smooth pasting automatic, its derivative is not, with a kink at zero.

14This did not happen in Wilson (2014). Indeed, an early version of that paper considered allowing the
decision-maker to choose when to stop, but it had little effect: She was indifferent about quitting in the
extremal memory states, but never strictly gained from it.
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the convexity of the optimal unconditional value V ∗ (by Lemmas 3 – 4 and Proposition 1),

and the relationship between the optimal unconditional value and the expected stopping

payoff u(p) described in Proposition 4. The right panel illustrates (for N = 2) that for

confident beliefs, Dug’s myopic payoff (green) exceeds his optimized value with distractions

(blue), while the gap between his value (blue) and his value with no distractions (red) depicts

his value lost due to distractions.

7 Value Comparative Statics

As seen in Proposition 4, Distraction shocks always induce a capital loss, but decision shocks

can be bad or good news at the moment they occur. The next result asserts that Dug’s ex

ante expected payoff falls as decision shocks become more common.

Proposition 5 Dug’s optimal initial value V∗ is strictly decreasing in δ and σ.

The proof is in Appendix F. Intuitively, increases in σ make the observation process more

noisy, while increasing δ reduces the expected time that Dug has to acquire information

before taking an action.

We now derive the limit behavior of the optimal initial value, emphasizing the dependence

on N by writing V∗(N). We first explicitly solve for V∗(1): With just one memory state, its

post-amnesia belief must be q1 = µ, and so, by (10) and (11),

V∗(1) = µνH1 +νL1 = µΠ

(
1− (ξ − 1)

2ξ

(
π

µΠ

) 1+ξ
2

)
+
π(1 + ξ)

2ξ

(
π

µΠ

) ξ−1
2

= µΠ+
π

ξ

(
π

µΠ

) ξ−1
2

Now, define the value with unbounded memory, V∗(∞) ≡ limN→∞ V∗(N) and the full infor-

mation value VFI = µΠ+ π. We then have the following limits.

Proposition 6 (Limit Values) The value with unbounded memory is

lim
α→0

V∗(N) = V∗(∞) = µΠ+
π

ζ

(
π

µΠ

) ζ−1
2

where ζ =
√

1 + 2δσ2

The full information value emerges as σ → 0, or as δ → 0 provided N ≥ 2. We also have:

lim
α→∞

V∗(N) = lim
δ→∞

V∗(N) = lim
σ→∞

V∗(N) = µΠ

The first of these results highlights that with no amnesia shocks, Dug is a standard

rational Bayesian, and thus earns the payoff he would obtain with infinite memory. The
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Figure 3: Changes in the Initial Value. Each graph illustrates how the optimal initial
value V∗ varies in σ (left) and δ (right). In all graphs the y-axis origin is Π, π/Π = 1/2, and
all remaining parameters are set to 1, e.g., in the left graph α = δ = 1.

formula simply evaluates V∗(1) at α = 0 (where ξ becomes ζ), since with no amnesia shocks,

it doesn’t matter how many memory states Dug has. The second highlights that two memory

states are sufficient to achieve the full information value as δ → 0. Intuitively, when decision

shocks are vanishingly rare, he knows that he will observe the signal process for a near infinite

length of time before making a decision. Thus, he can be nearly certain that θ = L in memory

state 1 and that θ = H in memory state 2, and both states are nearly absorbing. But two

memory states are also necessary to achieve the full information value, since evaluating V∗(1)

at δ = 0 gives a lower payoff:

lim
δ→0

V∗(1) = µΠ+
π

κ

(
π

µΠ

)κ−1
2

< VFI for κ =
√
1 + 2ασ2

Figure 3 illustrates Propositions 5 and 6.

8 The Demand for Memory and Information

A. The Demand for Memory. Assume that at time 0 Dug can choose the number of

memory slots N at increasing additive cost C(N) with C(1) = 0 and limN→∞C(N) > π. To

emphasize the dependence on N and the rate of amnesia shocks α, write the optimal initial

value (11) as V∗(N,α), so that Dug’s optimal memory correspondence obeys:

N∗(α) ≡ argmax
N∈N

[V∗(N,α)− C(N)] (24)

This problem must have a finite solution. Indeed, Dug’s value is bounded below by µΠ, since

he can always secure this value by selecting action H whenever the decision shock hits, and

his value is bounded above by the full information value π+µΠ. Consequently, the gain from

buying infinite memory is bounded above by π, which is strictly below limN→∞C(N).

By standard comparative statics reasoning (Milgrom and Shannon (1994)) the demand
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Figure 4: Precision and Memory. The left panel graphs the marginal benefit of memory
as a function of the rate of amnesia shocks for δ = σ = 1. The rate of amnesia shocks α
(x-axis) and precision of the signal ς (y-axis) are complements on the shaded region and
substitutes elsewhere (left graph) for N = 2 and δ = 1.

for memory N∗(α) will be non-decreasing (non-increasing) for any cost function when the

marginal benefit of an additional memory slot MB(N,α) ≡ V∗(N + 1, α) − V∗(N,α) is in-

creasing (decreasing) in α. Furthermore, monotonicity of the marginal benefit is necessary

for memory demand to be monotone in α for all cost functions. Unfortunately, Propositions 5

and 6 together imply that the MB cannot be monotonic in α at any N .

Corollary 2 The marginal benefit of memory is strictly positive for all 0 < α < ∞ with

limits limα→0MB(N,α) = limα→∞MB(N,α) = limN→∞MB(N,α) = 0.

In other words, the MB of memory is initially rising in α, and vanishes in N and α.

The simplest case consistent with the limits in Corollary 2 is that the marginal benefit

of memory is decreasing in N and hump-shaped in α. Under these assumptions, the optimal

number of memory slots N∗(α) is hump-shaped in α for any convex cost function C(N).

While we have not been able to establish these properties analytically, they do hold in every

computed example. Figure 4 (left) plots the MB of memory for four values of N .

B. The Demand for Information. Parameterize information by the precision of the signal

process, ς ≡ σ−1. To emphasize the dependence on ς and the rate of amnesia shocks α, write

the optimal initial value as V∗(ς, α). Assume that Dug chooses precision at increasing cost

C(ς) with C(0) = 0 and limς→∞C(ς) > π. The optimal precision correspondence is thus:

ς∗(α) ≡ argmax
ς≥0

[V∗(ς, α)− C(ς)] (25)

This problem must have a finite solution, by identical reasoning to that following (24).

As above, the demand for precision ς∗(α) will be non-decreasing (non-increasing) for any
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cost function when the difference V∗(ς, α′′) − V∗(ς, α′) is increasing (decreasing) in ς for all

α′′ > α′. Proposition 6 yields the following limits for such differences.

Corollary 3 The change in value from a change in the amnesia shock rate obeys

lim
ς→0

[
V∗(ς, α′′)− V∗(ς, α′)

]
= lim

ς→∞

[
V∗(ς, α′′)− V∗(ς, α′)

]
= 0

Thus, the difference V∗(ς, α′′) − V∗(ς, α′) cannot be strictly monotone in ς. Equivalently,

V∗ cannot be globally supermodular or globally submodular. The simplest intuitive possi-

bility consistent with these limits is that V∗ is submodular for low levels of precision and

supermodular for high levels of precision. This is true in all of our computed examples.

In particular, for N = 2 and δ = 1 we computed V∗ on a fine grid of parameter values

(ς0, ς1, ...ςK)× (α0, α1, ...αK) and then computed the cross partial differences:

V∗(ςi+1, αi+1) ≈ V∗(ςi+1, αi+1) + V∗(ςi, αi)− V∗(ςi+1, αi)− V∗(ςi, αi+1)

Figure 4 illustrates the regions on which these cross partial differences are positive (shaded)

and negative (white) in (α, σ = ς−1) space. Notice that for any fixed α, there is a threshold

value of precision, such that the cross partial differences are positive above this precision (low

values of σ) and negative below this level of precision.15 Thus, for these parameter values,

Dug chooses more precision (i.e. better information) as amnesia shocks become more common

when precision is already high (aka when precision is cheap), but chooses worse information

when amnesia shocks become more common when precision is already low.

9 Conclusion

Our model is the first to formally investigate how distractions impact rational Bayesian

learning, and how they might optimally be mitigated. While this setup introduces some

technical complications, e.g., the fact that post-distraction beliefs directly impact the payoff,

it is tractable for all parameters, and delivers comparative statics not found in the discrete

literature. One novel finding is that at very confident beliefs, the anticipated impact of future

distractions is so significant that Dug would actually prefer to stop learning. This does not

happen in typical learning models, but suggests an interesting possibility for future research.

We note that post-amnesia beliefs between distraction shocks are not a martingale.

Clearly, they must drift up from memory state 1 and down from memory state N . But

15The same super(sub)modularity pattern obtains for all values of δ we have numerically tested.
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this is the only definitive pattern we found, and in particular it is not the case that there is a

cutoff memory state such that Dug expects his beliefs to drift up below the cutoff, and down

above the cutoff. For some intuition, note that raising n (and hence qn) means fewer memory

states k > n that entail a positive drift qk − qn (and more states k < n with negative drift),

while also decreasing the magnitude of each drift term. This effect – it’s harder to drift up

when beliefs are already high – reduces expected drift as n rises. The competing effect is

that increasing n also makes transitions to higher memory states more likely, which increases

expected drift.

While our formal motivation is that of an individual decision maker learning in the face

of distractions, the same model could describe a sequence of decision makers with random

transition times between them. For example, each DM in the sequence could be a worker

within a firm in a given position (e.g., a lead researcher on an R&D project) with “distraction”

shocks separating the worker from the firm. Or our model could capture a sequence of doctors

seeking to diagnose a patient, where poor communication – both in the form of inadequate

notes and excessive notes – have often been blamed for poor patient outcomes.16

16For example, see Steiner, Stewart, and Matejka (2019).
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A Derivation of Belief Evolution (4) and (5)

Step 1 Deriving the Ito Process for Conditional Beliefs (4)

Lemma 1 in Anderson and Smith (2013) derives the following Ito diffusion for an uninformed

player’s beliefs (here, Dug) when observing a signal process with state contingent drift:

dθp =

{
4σ−2p(1− p)2dt+ 2σ−1p(1− p)dW if θ = H

−4σ−2p2(1− p)dt+ 2σ−1p(1− p)dW if θ = L
(26)

Applying Ito’s Lemma to (26) with ℓ(p) = log(p/(1 − p)), and simplifying using ℓ′(p) =

[p(1− p)]−1 and ℓ′′(p) = (2p− 1)[p2(1− p)2]−1, completes the derivation of (4).

Step 2 The derivation of the conditional distribution at the next shock (5).

In state θ, the CDF Φθ(x, t) ≡ Pr(ℓ− ℓ0 ≤ x|θ) is given by

Φθ(x, t) =
1

2
+

1

2
erf

(
x− µ1

σ1
√
2

)
, with µ1 =

2tsθ
σ2

and σ1 =
2
√
t

σ

⇒ ΦH(x, t) =
1

2
+

1

2
erf

(
σ

2

x− 2t
σ2√
2t

)
and ΦL(x, t) = 1− ΦH(−x, t) (27)

In state H, denote ϕH(x, t) ≡ ∂ΦH/∂x and ψH(x, t) ≡ ∂ΦH/∂t. These are given by:

ϕH(x, t) =
σ

2
√
2πt

exp

(
−σ

2

8t

(
x− 2t

σ2

)2
)

and ψH(x, t) = − 1

2t

(
x+

2t

σ2

)
ϕH(x, t)

The chance that the next distraction hits at time t, given no intervening decision shock, is:

Pr(amnesia at t|amnesia before decision) =
αe−αt

∫∞
t δe−δsds
α

α+δ

= (α+ δ)e−(α+δ)t (28)

And thus, the chance that ℓ−ℓ0 changes by at most x at the next amnesia shock is as follows:

FH(x) =

∫ ∞

0
(α+ δ)e−(α+δ)tΦH(x, t)dt

= − lim
t→∞

ΦH(x.t)e−(α+δ)t + lim
t→0

ΦH(x, t)e−(α+δ)t +

∫ ∞

0
e−(α+δ)tψH(x, t)dt

= 0 + 1x≥0 −
σ

4
√
2π

∫ ∞

0
e−(α+δ)tt−

3
2

(
x+

2t

σ2

)
exp

(
−σ

2

8t

(
x− 2t

σ2

)2
)
dt
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(the second line integrated by parts with u = ΦH(x, t), dv = (α + δ)e−(α+δ)t, du = ψH(x, t),

v = −e−(α+δ)t). Evaluate this integral and simplify with ξ =
√

1 + 2(α+ δ)σ2 to recover (5).

B Proof of Lemma 1 and Proposition 1

Begin with a generalized policy, where the vector of thresholds pi can depend on the memory

state i where amnesia last struck. We work with likelihood ratios Qi = qi/(1 − qi) and

Pi,j = pi,j/(1− pi,j). Recall by (11) that Dug wishes to maximize V = µVH + VL, with

Vθ =

N∑
i=1

µρθiw
θ
i , w

H
i = Π

(
1− FH

(
log

π

ΠQi

))
, wL

i = πFL

(
log

π

ΠQi

)
(29)

The proof proceeds in 6 steps. Step 1 calculates the payoff impact of a change in Qi via the wθ
i

terms. Step 2 calculates the payoff derivative in transition chances. Steps 3 and 4 derive the

indifference FOC’s for optimal thresholds (vs transition chances), allowing arbitrary beliefs;

Step 3 simplifies the problem using cumulative transition chances, and Step 4 proves that

optimally, pi is the same ∀i. Step 5 shows that given the FOC’s, Bayesian beliefs are optimal,

proving Lemma 1. Step 6 simplifies the FOC’s with Bayesian beliefs, proving Proposition 1.

Step 1 The part of ∂V/∂Qi resulting from changes in wθ
i has the same sign as µρHi /ρ

L
i −Qi.

The partial derivative of (29) in Qi, considering only the wθ
i terms, is µρHi ∂w

H
i /∂Qi +

ρLi ∂w
L
i /∂Qi. But by (29) along with (5), if π > ΠQi then this is

Π
∂

∂Qi

[
µρHi

ξ + 1

2ξ

(
ΠQi

π

) ξ−1
2

+ ρLi
π

Π

(
1− ξ − 1

2ξ

(
ΠQi

π

) ξ+1
2

)]

= Π
ξ + 1

2ξ

ξ − 1

2Qi

(
ΠQi

π

) ξ−1
2 [

µρHi −Qiρ
L
i

]
As desired. A symmetric argument applies if instead π < ΠQi. □.

Step 2 Given constraint λθi,i = 1−
∑

j ̸=i λ
θ
i,j, the following holds ∀j ̸= i ∈ {1, 2, ..., N}: 17

∂Vθ

∂λθi,j
= ρθi

1− η

η
(νθj − νθi )

Fix an interval policy, and let Υ (·) be the induced probability distribution over histories,

with Υ(z1|z2) be the chance of history z1 conditional on z2 having occurred. Also recall that

17This step adapts the proof of Proposition 1 in Wilson (2014) (based on Piccione and Rubinstein (1997)).
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Λθ
i,j ≡ (1 − η)λθi,j is the total transition chance i → j between amnesia shocks (given θ),

with λθi,j the chance conditional on no decision shock. For any two memory states i and j,

observe that Υ(z|θ) can be decomposed as a term that does not depend on Λθ
i,j multiplied

by (Λθ
i,j)

#(z), where #(z) denotes the number of occurrences of a transition i → j between

amnesia shocks along the history z. Using this for the first equality below, and letting

H(i → j|z) be the set of all subhistories of z that end with an amnesia shock in memory

state i followed by a transition to j by the next amnesia shock, we have

∂

∂Λθ
i,j

Υ(z|θ) = #(z)
Υ(z|θ)
Λθ
i,j

=
∑

z′∈H(i→j|z)

Υ(z|θ)
Λθ
i,j

(30)

Next, let X(i) denote the set of all histories ending with an amnesia shock in state i, and

for any history z, let Υ(z|(z′, j), θ) denote the probability of z conditional on z′ followed by

a transition (by the next amnesia shock) to state j, given θ. Then we have:

∑
z′∈H(i→j|z)

Υ(z|θ)
Λθ
i,j

=
∑

z′∈H(i→j|z)

Υ(z′|θ)Υ(z|(z′, j), θ) =
∑

z′∈X(i)

Υ(z′|θ)Υ(z|(z′, j), θ)

(This holds since the RHS summand vanishes whenever (z′, j) is not a subhistory of z; and if

it is—so z′ (ending with an amnesia shock in i) followed by a transition i→ j is a subhistory

of z, and thus also z′ ∈ H(i → j|z)—then in both the middle and RHS expressions, the

corresponding term in the summand is equal to Υ(z|θ)/Λθ
i,j). Plugging this into (30),

∂

∂Λθ
i,j

Υ(z|θ) =
∑

z′∈X(i)

Υ(z′|θ)Υ(z|(z′, j), θ)

Using this for the final equality in the first line below, we then obtain:

∂Vθ

∂Λθ
i,j

≡ ∂

∂Λθ
i,j

N∑
j′=1

∑
z∈X(j′)

ηΥ(z|θ)wθ
j′ = η

N∑
j′=1

∑
z∈X(j′)

 ∑
z′∈X(i)

Υ(z′|θ)Υ(z|(z′, j), θ)

wθ
j′

=
1

η

∑
z′∈X(i)

ηΥ(z′|θ)

 N∑
j′=1

∑
z∈X(j′)

ηΥ(z|(z′, j), θ) wθ
j′

 ≡ 1

η
ρθi ν

θ
j

(for the final simplification, the bracketed term is the payoff after a history z′ followed by a

transition to j; by stationarity this is νθj ∀z′). Multiply by 1 − η for the derivative in λθi,j ;

and subtract the derivative in λθi,i to incorporate constraint λθi,i = 1−
∑

j ̸=i λ
θ
i,j . □
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Step 3 Reformulating the Problem: The Indifference Conditions

We reformulate the problem using cumulative transition chances. For any i > j, denote by

aθi,j the transition chance (between shocks) from i to k ≤ j; and for any i ≤ j, bθi,j is the

chance of moving from i to k ≥ j. For our generalized policy, with cutoffs (Pi,j)
N
j=1 after a

distraction in memory state i, (37) becomes λθi,j = F θ
(
log

Pi,j

Qi

)
− F θ

(
log

Pi,j−1

Qi

)
. Write as:

λθi,j =

{
aθi,j − aθi,j−1 if j < i

bθi,j−1 − bθi,j if j > i
, where aθi,0 ≡ 0, bθi,N ≡ 0 and (31)

aLi,j ≡
ξ + 1

2ξ

(
Pi,j

Qi

) 1
2
(ξ−1)

(i > j) and bLi,j ≡
ξ − 1

2ξ

(
Qi

Pi,j

) 1
2
(ξ+1)

(i ≤ j) (32)

with aHi,j and bHi,j defined by interchanging ξ − 1 and ξ + 1 in (32). Observe that

daHi,j

daLi,j
=

∂aHi,j

∂
(
Pi,j

Qi

)/ ∂aLi,j

∂
(
Pi,j

Qi

) =
Pi,j

Qi
, and similarly

dbHi,j

dbLi,j
=
Pi,j

Qi
(33)

By (31) choosing the λθi,j ’s optimally is equivalent to choosing all aθi,j and bθi,j optimally.

Now, compute the derivative of payoff µVH + VL in aLi,j , with aHi,j as a function of aLi,j via

(33). By (31), aθi,j appears in both λθi,j ≡ aθi,j − aθi,j−1 and λθi,j+1 ≡ aθi,j+1 − aθi,j but no other

transition chances. So the total derivative of µVH + VL in aLi,j , namely µ
daHi,j
daLi,j

∂VH

∂aHi,j
+ ∂VL

∂aLi,j
, is

µ
daHi,j

daLi,j

(
∂VH

∂λHi,j

∂λHi,j

∂aHi,j
+

∂VH

∂λHi,j+1

∂λHi,j+1

∂aHi,j

)
+

(
∂VL

∂λLi,j

∂λLi,j

∂aLi,j
+

∂VL

∂λLi,j+1

∂λLi,j+1

∂aLi,j

)

= µ
daHi,j

daLi,j

(
∂VH

∂λHi,j
(1) +

∂VH

∂λHi,j+1

(−1)

)
+

(
∂VL

∂λLi,j
(1) +

∂VL

∂λLi,j+1

(−1)

)

Using the Step 2 expression for ∂Vθ

∂λθ
i,j

along with (33), this is −1−η
η times

[
µ

(
Pi,j

Qi

)(
ρHi (νHi − νHj )− ρHi (νHi − νHj+1)

)
−
(
ρLi (ν

L
j − νLi )− ρLi (ν

L
j+1 − νLi )

)]
= ρLi

[
Pi,j

µρHi
ρLi Qi

(νHj+1 − νHj )− (νLj − νLj+1)

]
(34)

Similarly, we have from (31) that bθi,j appears in both λθi,j ≡ bθi,j−1−bθi,j and λθi,j+1 ≡ bθi,j−bθi,j+1

but no other transition chances. So the payoff derivative in bLi,j , viewing b
H
i,j as a function of
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bLi,j via (33), is:

µ
dbHi,j

dbLi,j

(
∂VH

∂λHi,j

∂λHi,j

∂bHi,j
+

∂VH

∂λHi,j+1

∂λHi,j+1

∂bHi,j

)
+

(
∂VL

∂λLi,j

∂λLi,j

∂bLi,j
+

∂VL

∂λLi,j+1

∂λLi,j+1

∂bLi,j

)

= µ
dbHi,j

dbLi,j

(
∂VH

∂λHi,j
(−1) +

∂VH

∂λHi,j+1

(1)

)
+

(
∂VL

∂λLi,j
(−1) +

∂VL

∂λLi,j−1

(+1)

)

Using the Step 2 formula for ∂V/∂λθi,j and the second expression in (33), this is 1−η
η times

µ
Pi,j

Qi

(
ρHi (νHj − νHi )(−1) + ρHi (νHj+1 − νHi )

)
+
(
−ρLi (νLj − νLi ) + ρLi (ν

L
j+1 − νLi )

)
= ρLi

[
Pi,j

µρHi
ρLi Qi

(νHj+1 − νHj )− (νLj − νLj+1)

]
(35)

Step 4 The Optimal Interval Policy Thresholds

Lemma B.1 Given any beliefs (Qj)
N
j=1, the optimal Pi,j leaves Dug indifferent between post-

amnesia values in states j and j + 1 at “belief” (likelihood ratio) Pi,j(µρ
H
i /Qiρ

L
i ). If (36)

below is positive (negative), Dug’s payoff is falling (rising) in Pi, j.

Proof: First consider Pi,j with i > j. By (32), Pi,j appears in a
θ
i,j but no other cumulative

transition chances, and (34) gives the total payoff derivative in aLi,j , with aHi,j viewed as a

function of aLi,j . Thus, differentiating a
L
i,j =

ξ+1
2ξ

(
Pi,j

Qi

) 1
2
(ξ−1)

(from (32)) in Pi,j and combining

with (34), the payoff derivative ∂V/∂Pi,j is:

∂V
∂aLi,j

∂aLi,j
∂Pi,j

= −1− η

η
ρLi

[
Pi,j

µρHi
ρLi Qi

(νHj+1 − νHj )− (νLj − νLj+1)

]
· ξ + 1

2ξ

ξ − 1

2Pi,j

(
Pi,j

Qi

) ξ−1
2

And for ı ≤ j, where (by (32)) Pi,j appears in bθi,j ≡ ξ−1
2

(
Qi

Pi,j

) ξ+1
2

but no other cumulative

transition chances, differentiate bLi,j and combine with (35) to obtain ∂V/∂Pi,j :

∂V
∂bLi,j

∂bLi,j
∂Pi,j

=
1− η

η
ρLi

[
Pi,j

µρHi
ρLi Qi

(νHj+1 − νHj )− (νLj − νLj+1)

](
−ξ − 1

2ξ

ξ + 1

2Pi,j

(
Qi

Pi,j

) ξ+1
2

)

Together, these two expressions imply that for all i and j, ∂V/Pi,j has the opposite sign to:

Pi,j
µρHi
ρLi Qi

(νHj+1 − νHj )− (νLj − νLj+1) (36)
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This proves the final assertion in Lemma B.1, and establishes that (36) must vanish

for interior optimal cutoffs Pi,j . We now prove that it optimally vanishes also in corner

solutions. Specifically, we rule out “lower corner solutions” where ∂V/∂Pi,j < 0 but Pi,j is

set to its minimum possible value, namely Pi,j−1. (A symmetric argument rules out upper

corner solutions, where ∂V/∂Pi,j > 0 with Pi,j set to its maximum). Toward a contradiction,

assume an optimal memory where for some i and j, Pi,j = Pi,j−1 and ∂V/∂Pi,j < 0 (so (36) is

positive). Given i, let j∗ be the smallest such j. We know j∗ ≥ 2, since (36) cannot be strictly

positive at Pi,1 = Pi,0 ≡ 0. So by construction, Pi,j∗−1 is interior, thus (by optimality) Dug

is indifferent between expected post-amnesia payoffs in j∗ − 1 and j∗ at “belief” Pi,j∗−1
µρHi
ρLi Qi

.

But by construction ((36) is positive for j∗ and Pi,j∗ = Pi,j∗−1), he strictly prefers j∗ + 1

to j∗ at this belief, and thus also to j∗ − 1. But this contradicts optimality: Pi,j∗ = Pi,j∗−1

implies that Dug never transitions i → j∗ between distractions, so Pi,j∗−1 is the effective

threshold between j∗ − 1 and j∗ + 1, and since it is interior by construction, optimality

requires indifference. This proves the first assertion in Lemma B.1. □

Step 5 Bayesian Beliefs are Optimal. (Proof of Lemma 1)

We now consider the optimal post-amnesia beliefs Qi. Firstly they impact the payoff via the

aθi,j and bθi,j terms, but by Step 4, optimal cutoffs ensure that this effect vanishes. So given

optimal cutoffs and Step 1, the payoff derivative in Qi has the same sign as µρHi /ρ
L
i − Qi,

which is positive at a below-Bayesian belief (Dug should raise Qi) and negative at an above-

Bayesian belief (Dug should lower Qi). Thus Bayesian beliefs are optimal. □

Step 6 Indifference as a FOC (Proof of Proposition 1).

Substituting Qi = µρHi /ρ
L
i from Step 5 into equation (36), every Pi,j solves the same indif-

ference condition, namely (36) vanishes. Setting Pi,j = Pj and applying Bayes consistency,

this rearranges to (13), completing the proof. □

B.1 Proof of Corollary 1

Toward a contradiction, assume an optimal corner solution (Pi = Pi+1) for some i). Then

Dug never uses memory state i, so consider instead adding a new memory state “0”, with

threshold P0 < P1 and Bayesian beliefs Q0; by Step 1 of Definition 1 below, this implies

Q0/P0 = x, where x ∈ (0, 1) is the root of (38). We show that for any P0 sufficiently small

(where P0 = 0 means the state is unused), Dug gains by raising P0. To this end, consider the
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limit P0 → 0, where Q0 = P0x→ 0. By (10), wL
0 ≡ πFL

(
π

ΠQ0

)
→ π. And by (37),

λL0,1 →
ξ − 1

2ξ
x

ξ+1
2 > 0 and λL0,j =

ξ − 1

2ξ
x

ξ+1
2

((
P0

Pj−1

) ξ+1
2

−
(
P0

Pj

) ξ+1
2

)
→ 0 ∀j ≥ 2

Thus (12) becomes

vL0 → ηπ + (1− η)
ξ − 1

2ξ
x

1
2
(ξ+1)vL1 + (1− η)

(
1− ξ − 1

2ξ
x

1
2
(ξ+1)

)
vL0

⇒ lim
P0→0

(1− η)
ξ − 1

2ξ
x

1
2
(ξ+1)(vL0 − vL1 ) = η(π − vL0 )

Since optimally νL1 < π (νL0 = νL1 = π means Dug ultimately chooses L with probability

1, learning nothing), this implies that νL0 − νL1 remains boundedly positive, and so P1(ν
H
1 −

νH0 )−(νL0 −νL1 ) remains boundedly negative as P0 → 0. That is, Dug strictly prefers memory

state 0 to 1 at threshold P0, and so by Proposition (1) should raise P0. □

C Post-Amnesia Beliefs: Proof of Proposition 2

We present a recursive algorithm which yields unique post-amnesia beliefs q = (q1, q2, . . . , qN )

for any interval policy p = (p1, . . . , pN−1) and prove that it satisfies (9) iff it obeys our

recursion. We use Qn ≡ qn/(1− qn) and Pn ≡ pn/(1− pn); and so, by (6) and (5):

λHi,j =


ξ+1
2ξ

((
Qi

Pj−1

) ξ−1
2 −

(
Qi

Pj

) ξ−1
2

)
if i < j

ξ−1
2ξ

((
Pj

Qi

) ξ+1
2 −

(
Pj−1

Qi

) ξ+1
2

)
if i > j

(37)

And λLi,j just swaps ξ − 1 and ξ + 1, while λθi,i = 1−
∑

j ̸=i λ
θ
i,j .

Fis an interval policy. Let n0 denote the initial state; namely the index of the memory

state with µ ∈ [Pn0−1, Pn0 ]. Define γn ≡ Pn/Pn+1 ≤ 1 for n < N − 1 with γ0 = 0 and

γN−1 = 1, and the functions f : R 7→ R, g : R2 7→ R, and β : R 7→ R as follows:

f(R) =
η

1− η

(
R− ξ − 1

ξ + 1

)
+

2

ξ + 1
R

ξ+1
2 (38)

g(R, γ) =

2ηξ
(1−η)(ξ+1) (β(γ)−R) +

( γ
R

) ξ−1
2

)
(
β(γ)− ξ−1

ξ+1γ
)
−R

ξ+1
2

(
1− ξ−1

ξ+1β(γ)
)

(
(β(γ))2

γ − 1
)(

γ
1−ξ
2 − 1

) (39)

β(γ) =

(
ξ − 1

ξ + 1

)(
1− γ

ξ+1
2

)
/
(
1− γ

ξ−1
2

)
(40)
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Definition 1 The Outside-In Recursion constructs (Qn)
N
n=1 recursively as follows:

1. If n0 ̸= 1, then Q1 solves f(Q1/P1) = 0. If n0 ̸= N , QN solves f(PN−1/QN ) = 0.

2. Given Qk and ϕk ≡ ρLk /ρ
L
1 for k ≤ n− 1, Qn and ϕn ∀n < n0 solve

f
(
Qn

Pn

)
g
(
Qn

Pn
, γn−1

) =

−
∑

k≤n−1

ϕkf
(
Qk
Pn

)
∑

k≤n−1

ϕk

(
Qk
Pn

) ξ+1
2

and ϕn =

−
∑

k≤n−1

ϕkf
(
Qk
Pn

)
f(Qn

Pn
)

(41)

3. Given Qk and Φk ≡ ρHk /ρ
H
N for k ≥ n+ 1, Qn and Φn ∀n > n0 solve

f
(
Pn−1

Qn

)
g
(
Pn−1

Qn
, γn−1

) =

−
∑

k≥n+1

Φkf
(
Pn−1

Qk

)
∑

k≥n+1

Φk

(
Pn−1

Qk

) 1
2
(ξ+1)

and Φn =

−
∑

k≥n+1

Φkf
(
Pn−1

Qk

)
f(Pn−1

Qn
)

(42)

4. In the initial state, Qn0 is the root of the following equation, where the coefficients

(Xi)
4
i=1 (given by (44)) depend on η, ξ, and the average beliefs Qn0−1 in states k ≤ n0−1

and Q
n0+1

in states k ≥ n0 + 1, given θ = L:

X1 −

(
Q

n0+1
− µ

)
µ−Qn0−1

X3

(Qn0

Pn0

) 1
2
(ξ+1)

+

X2 −

(
Q

n0+1
− µ

)
µ−Qn0−1

X4

(Pn0−1

Qn0

) 1
2
(ξ−1)

+
η

1− η

ξ − 1

2

µ−Qn0

µ−Qn0−1

(X2X3 −X1X4) (43)

where

X1 =

(
Q

n0+1

Pi0
− ξ+1

ξ−1

)
γ

1
2
(ξ−1)

n0−1 X2 =
ξ+1
ξ−1

Q
n0+1

Pn0
− 1

X3 =
ξ+1
ξ−1 − Qn0−1

Pn0−1
X4 = γ

1
2
(ξ+1)

n0−1

(
1− ξ+1

ξ−1

Qn0−1

Pi0−1

) (44)

5. Appendix C.5 also solves for ρL1 , ρ
L
n0
, and ρLN in terms of coefficients X5 and X6 in (45),

then remaining ρθk values follow using ϕk and Φk (Steps 2 and 3) and Bayes consistency:

ρLn0
=

1

1 +X5 +X6
, ρL1 =

X5ρ
L
n0∑

j≤n0−1
ϕj
, ρLN =

X6ρ
L
n0∑

j≥i0+1
Φj

QN
Qj

, where (45)

X5 =
X1

(
Qn0
Pn0

) 1
2
(ξ+1)

+X2

(
Pn0−1

Qn0

) 1
2
(ξ−1)

η
1−η

ξ−1
2 (X2X3 −X1X4)

, X6 =
X3

(
Qn0
Pn0

) 1
2
(ξ+1)

+X4

(
Pn0−1

Qn0

) 1
2
(ξ−1)

η
1−η

ξ−1
2 (X2X3 −X1X4)
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C.1 Post-Amnesia Beliefs Obey the Recursion for n ̸= n0

Lemma C.1 Any fixed point (Qn)
N
n=1 of (9) satisfies the Outside-In Recursion ∀n ̸= n0.

Proof: We prove the n < n0 case. Symmetric steps establish the n > n0 case. The

expression f(Q1/P1) = 0 in Part 1 is precisely the second expression in (41) at n = 1, so

we prove that this expression holds ∀1 ≤ n < n0, and that the first expression in (41) holds

∀2 ≤ n < n0. Throughout, we exploit the fact that by (9), ρθ is the steady-state distribution

of a Markov process that jumps to n0 with chance η and otherwise transitions according to

λθi,j , and so probability masses entering and leaving any block of states must balance.

Step 1 (Qn)
N
n=1 is a fixed point of (9) iff it obeys the second equation in (41) ∀1 ≤ n < n0.

Using the fact that the mass leaving states {1, 2, ..., n} equals the mass entering these states

and taking ratios (H to L):

∑
k≤n ρ

H
k

(
η + (1− η)

∑
j≥n+1 λ

H
k,j

)
∑

k≤n ρ
L
k

(
η + (1− η)

∑
j≥n+1 λ

L
k,j

) =

∑
j≥n+1 ρ

H
j

∑
k≤n(1− η)λHj,k∑

j≥n+1 ρ
L
j

∑
k≤n(1− η)λLj,k

(46)

We have from (37) and Bayes consistency (Qn = µρHn /ρ
L
n) that for any j ≥ n+ 1,

ρHj

ρLj

∑
k≤n λ

H
j,k∑

k≤n λ
L
j,k

=
Qj

µ

ξ−1
2ξ

(
Pn
Qj

) ξ+1
2

ξ+1
2ξ

(
Pn
Qj

) ξ−1
2

≡ ξ − 1

ξ + 1

Pn

µ

So the RHS of (46) equals ξ−1
ξ+1

Pn
µ . Also simplifying the LHS using µρHk ≡ ρLkQk, then dividing

LHS numerator and denominator by ρL1 , and LHS and RHS by Pn/µ, (46) becomes

∑
k≤n−1 ϕk

Qk
Pn

(
η

1−η +
∑

j≥n+1 λ
H
k,j

)
+ ϕn

Qn

Pn

(
η

1−η +
∑

j≥n+1 λ
H
n,j

)
∑

k≤n−1 ϕk

(
η

1−η +
∑

j≥n+1 λ
L
k,j

)
+ ϕn

(
η

1−η +
∑

j≥n+1 λ
L
n,j

) =
ξ − 1

ξ + 1
(47)

By (37) for k ≤ n we have
∑

j≥n+1 λ
H
k,j = ξ+1

2ξ

(
Qk
Pn

) ξ−1
2
, and just swap ξ − 1 with ξ + 1 in

state L. Plugging this into (47) and solving for ϕn yields the second expression in (41). □.

Step 2 (Qn)
N
n=1 is a fixed point of (9) iff it obeys the first equation in (41) ∀2 ≤ n < n0.

Using the fact that probability mass leaving state n equals probability mass entering state

n, grouping the expression to have all ρθk terms with k ≤ n on the LHS, and taking ratios (H
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to L) yields:

ρHn
(
1− (1− η)λHn,n

)
−
∑

k≤n−1 ρ
H
k (1− η)λHk,n

ρLn
(
1− (1− η)λLn,n

)
−
∑

k≤n−1 ρ
L
k (1− η)λLk,n

=

∑
j≥n+1 ρ

H
j (1− η)λHj,n∑

j≥n+1 ρ
L
j (1− η)λLj,n

The RHS equals Pn · β(γn−1)/µ (with β defined in (40)), since by (37) for ∀j ≥ n+ 1,

µ
ρHj

ρLj

λHj,n

λLj,n
≡ Qj

ξ−1
2ξ

((
Pn
Qj

) ξ+1
2 −

(
Pn−1

Qj

) ξ+1
2

)
ξ+1
2ξ

((
Pn
Qj

) ξ−1
2 −

(
Pn−1

Qj

) ξ−1
2

) = Pn
ξ − 1

ξ + 1

1− γ
ξ+1
2

n−1

1− γ
ξ−1
2

n−1

≡ Pn · β(γn−1)

Using this and simplifying the LHS using first µρHj ≡ ρLj Qj , then dividing numerator and

denominator by (1− η)ρL1 , then dividing LHS and RHS by Pn/µ, we obtain:

ϕn
Qn

Pn

(
1

1−η − λHn,n

)
−
∑

k≤n−1 ϕk
Qk
Pn
λHk,n

ϕn

(
1

1−η − λLn,n

)
−
∑

k≤n−1 ϕkλ
L
k,n

= βn−1 ⇒ ϕn =

∑
k≤n−1 ϕk

(
λLk,nβn−1 − Qk

Pn
λHk,n

)
(

1
1−η − λLn,n

)
βn−1 − Qn

Pn

(
1

1−η − λHn,n

)

Using transition chances from (37), simplify using (39) as ϕn =
∑

k≤n−1

ϕk

(
Qk
Pn

) ξ+1
2
/g(Qn

Pn
, γn−1).

Equate the RHS of this expression with the RHS of the second expression in (41) (verified in

Step 1), and solve for Qn/Pn to obtain the first expression in(41). □

C.2 Existence, Uniqueness, and Bounds for n ̸= n0

We now prove (for n ̸= n0) that there is a unique solution Qn to our Recursion, with

Qn ∈ [Pn−1, Pn]. First, we establish key properties of functions β, f , and g from (40),(38),(39):

Lemma C.2 If γ < 1, then β(γ) > ξ−1
ξ+1 , β(γ) >

√
γ, and β(γ) < 1. Thus, f as defined

in (38) is strictly increasing in R, and g defined in (39) is strictly decreasing in R.

Proof: The second sentence follows by immediate inspection of (38) and (39) if the three

inequalities for β in the first sentence hold. The first β inequality follows directly from the

definition of β and γ < 1. For the second, let x ≡ √
γ, so that

β
√
γ
≡ β

x
≡ ξ − 1

ξ + 1

1− xξ+1

x− xξ
(48)
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We first claim that the expression in (48) decreases in x. Indeed, its derivative is negative iff:

−(ξ + 1)xξ − 1− xξ+1

x− xξ

(
1− ξxξ−1

)
< 0 ⇔ x2ξ + xξ−1ξ(1− x2)− 1 < 0 (49)

To show that the final expression in (49) is negative ∀x < 1, it suffices to show that it’s

increasing in x, since it vanishes at x = 1. Differentiating, its derivative has the same sign

as ξ − 1− (ξ + 1)x2 + 2xξ+1; this is positive, as desired, since it is itself decreasing in x < 1

by an immediate calculation, thus at least its zero value at x = 1. So (49) holds, thus β/x

decreases in x and so is at least its value in the limit as x→ 1, which by l’hopital’s rule is 1.

Thus β/
√
γ ≥ 1. Finally for β < 1: multiplying (48) by x and differentiating in x yields

dβ

dx
=

d

dx

1− xξ+1

1− xξ−1
=

−(ξ + 1)xξ + 1−xξ+1

1−xξ−1 (ξ − 1)xξ−2

1− xξ−1
=

(ξ + 1)xξ−2

1− xξ−1

(
β − x2

)
This is positive by the second claim, β > x, given that x < 1 (so x > x2). Thus β is increasing

in x, and thus is at most its limit as x→ 1, which by l’hopital’s rule is 1. □

Lemma C.3 ∀n ̸= n0, the Outside-In Recursion has a unique solution, with Qn ∈ [Pn−1, Pn].

Proof: We prove the n < n0 case by induction. Symmetric logic applies to n > n0.

Step 1 Proof of Lemma for n = 1

By Definition 1 Part 1, Q1/P1 is the root x of f : By Lemma C.2 f is increasing in R, and

by immediate inspection of (38), f is negative at R = 0 and positive at R = 1. Thus it has

a unique root x between 0 and 1, and so 0 < Q1/P1 < 1. □.

Now assume the Lemma is true for k < n. We prove it for k = n via the following steps.

Step 2 g(1, γ) < 0 and g(x, γ) > 0 for any γ ≤ 1

For the first claim, using (39), the numerator of g(R, γ) evaluated at R = 1 is

2ηξ

(1− η)(ξ + 1)
(β − 1) + γ

ξ−1
2

(
β − ξ − 1

ξ + 1
γ

)
−
(
1− ξ − 1

ξ + 1
β

)
< γ

1
2
(ξ−1)

(
1− ξ − 1

ξ + 1
γ

)
−
(
1− ξ − 1

ξ + 1

)
by β < 1 (Lemma C.2)

Collecting terms, this is precisely −(1−γ
1
2
(ξ−1)) · (1−β), at most 0 by β ≤ 1. For the second

claim, clearly the denominator of g(R, γ) in (39) is positive, so consider the numerator. By
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inspection it is decreasing in β, so by Lemma C.2 it is at least its value at β lower bound

ξ−1
ξ+1 , which simplifies to −f(x) +

(
γ
x

) ξ−1
2 ξ−1

ξ+1(1− γ). This is positive by f(x) = 0. □.

Step 3 The RHS of the first expression in (41) exceeds 2
ξ+1

(
1− γ

ξ+1
2

n−1

)(
1

γn−1

) ξ+1
2

Rewrite its numerator as:

−
∑

k≤n−1

ϕkf

(
Qk

Pn

)
= −

∑
k≤n−1

ϕk

[
f

(
γn−1

Qk

Pn−1

)]
(50)

But by (38), for any x and γ we have

f (x)− f (γx) =
η

1− η
(1− γ)x+

2

ξ + 1
x

ξ+1
2

(
1− γ

ξ+1
2

)
⇒ −f(γx) > −f(x) + 2

ξ + 1
x

ξ+1
2

(
1− γ

ξ+1
2

)
(51)

Using (51) at γ = γn−1 and x = Qk/Pn−1 to replace the square bracketed term in (50), we

obtain the following lower bound on the RHS of (50):

−
∑

k≤n−1

ϕkf

(
Qk

Pn−1

)
+

2

ξ + 1
(1− γ

ξ+1
2

i−1 )
∑

k≤n−1

ϕk

(
Qk

Pn−1

)
But the first term vanishes using the second expression in (41) for ϕn−1, so this is precisely

2
ξ+1

(
1− γ

ξ+1
2

n−1

)(
1

γn−1

) ξ+1
2

times the RHS denominator of the first expression in (41). □.

Step 4 At Qn

Pn
= γn−1, the LHS of the first (41) equation is smaller than the Step 3 expres-

sion.

Evaluating (38) and (39) at Rn = γn−1, this LHS expression f(γn−1)/g(γn−1, γn−1) is

γ
− ξ+1

2
n−1

(
1− γ

ξ−1
2

n−1

)(
β2n−1 − γn−1

)( η
1−η

(
γn−1 − ξ−1

ξ+1

)
+ 2

ξ+1γ
ξ+1
2

n−1

)
2ηξ

(1−η)(ξ+1) (βn−1 − γn−1) +
(
βn−1 − ξ−1

ξ+1γn−1

)
− γ

ξ+1
2

n−1

(
1− ξ−1

ξ+1βn−1

) (52)

Collecting terms, the denominator of (52) rearranges to

2ξ

(1− η) (ξ + 1)
(βn−1 − γn−1)−

(
1− γ

ξ−1
2

n−1

)(
β2n−1 − γn−1

)
≥

(
2ξ

(1− η)(ξ + 1)
− (1− γ

ξ−1
2

n−1)

)
(β2n−1 − γn−1) by βn−1 ≤ 1
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This is positive by Lemma C.2. Using this to replace the denominator in (52), then dividing

numerator and denominator by β2n−1 − γn−1, we obtain the following upper bound on (52):

(
1

γn−1

) ξ+1
2
(
1− γ

ξ−1
2

n−1

) η
1−η

(
γn−1 − ξ−1

ξ+1

)
+ 2

ξ+1γ
ξ+1
2

n−1

2ξ
(1−η)(ξ+1) − 1 + γ

ξ−1
2

n−1


Comparing to the Step 3 expression, it suffices to show that the square bracketed term is

at most 2
ξ+1 . This holds since the numerator multiplied by ξ+1

2 is at most η
1−η + γ

ξ+1
2

n−1 by

γn−1 ≤ 1, while the denominator is at least this large by ξ > 1. □

Step 5 Completing the Proof

We prove that the first equation in (41) has a unique solution Rn ≡ Qn/Pn ∈ [γn−1, 1]. By

Step 3, the RHS of (41) is positive, so the LHS, namely f(Rn)/g(Rn, γn−1) must be too. By

Step 2 and since f is increasing by Lemma C.2, this is impossible if Rn < x, where f < 0 < g.

Also by Step 2, since g is decreasing by Lemma C.2, g downcrosses at some R ∈ (x, 1), so

a solution with Rn > R is impossible (here f > 0 >g). So any solution lies in [x,R]. Here

the LHS of (41) is increasing (f is increasing, g decreasing, and both positive), so there is at

most one solution. A solution exists by the intermediate value theorem, and lies in [γn−1, 1],

since the LHS is too small at Rn = γn−1 by Steps 3 and 4, and too large (∞) at Rn = R. □.

C.3 Post-Amnesia Beliefs Obey the Recursion for n = n0

Define Qn0−1 and Q
n0+1

as (resp.) the average beliefs in states below, above n0 in θ = L:

Qn0−1 ≡
∑

k≤n0−1 ρ
L
kQk∑

k≤n0−1 ρ
L
k

=

∑
k≤n0−1 ϕkQk∑
k≤n0−1 ϕk

, Q
n0+1

≡
∑

k≥n0+1 ρ
L
kQk∑

k≥i0+1 ρ
L
k

=

∑
k≥n0+1Φk∑
k≥i0+1

Φk
Qk

Step 1 Deriving Key Equations

Having derived beliefs Qn ∀n ̸= n0, and ratios ϕn ≡ ρLn/ρ
L
1 (∀n < n0) and Φn ≡ ρHn /ρ

H
N

(∀n > n0), we now derive the 3 equations that identify the remaining 3 key variables: Qn0 ,

X5 ≡
(∑

k≤n0−1 ρ
L
k

)
/ρLn0

, and X6 ≡
(∑

k≥n0+1 ρ
L
k

)
/ρLn0

. First define the coefficients:

B̃ =

∑
k≤n0−1

ρLk

(
Qk

Pn0−1

) ξ+1
2

∑
k≤n0−1

ρLk
and b̃ =

∑
k≥n0+1

ρLk

(
Pn0
Qk

) ξ−1
2

∑
k≥i0+1

ρLk
(53)
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Equating the probabilities of leaving and entering state n0, we have ρθn0
(1 − λθn0,n0

) =∑
j ̸=n0

ρθj

(
η

1−η + λθj,n0

)
. When θ = L, using (37) and multiplying by 2ξ

ξ−1/ρ
L
n0
, this is

(
Qn0

Pn0

) 1
2
(ξ+1)

+
ξ + 1

ξ − 1

(
Pn0−1

Qn0

) 1
2
(ξ−1)

(54)

= X5

(
η

1− η

2ξ

ξ − 1
+

(
1− γ

ξ+1
2

n0−1

)
B̃

)
+X6

(
η

1− η

2ξ

ξ − 1
+
ξ + 1

ξ − 1

(
1− γ

1
2
(ξ−1)

n0−1

)
b̃

)
And in state θ = H, swapping ξ + 1 with ξ − 1 and replacing ρLk by ρHk = ρLkQk/µ, and

multiplying through by 2ξ
ξ+1

Qn0
Pn0

, we obtain the following analog to equation (54):

(
Qn0

Pn0

) ξ+1
2

+
ξ − 1

ξ + 1
γn0−1

(
Pn0−1

Qn0

) ξ−1
2

= X5

(
η

1− η

2ξ

ξ + 1

Qn0−1

Pn0

+

(
1− γ

ξ−1
2

n0−1

)
γn0−1B̃

)

+X6

(
η

1− η

2ξ

ξ + 1

Qn0+1

Pn0

+
ξ − 1

ξ + 1

(
1− γ

ξ+1
2

n0−1

)
b̃

)
(55)

But since
∑N

k=1 ρ
θ
k = 1 and µρHk = ρLkQk, we also know

0 =
N∑
k=1

ρLk
ρL1

(µ−Qk) ≡ X5

(
µ−Qn0−1

)
+X6

(
µ−Q

n0+1

)
+ (µ−Qn0) (56)

Letting c and d be the coefficients on X5 and X6 (respectively) in (54), and C and D the

corresponding coefficients in (55), solve (54) and (55) for X5 and X6 in terms of Qn0 as

X5 =
(D − d)

(
Qn0
Pn0

) 1
2
(ξ+1)

+
(
D ξ+1

ξ−1 − ξ−1
ξ+1γn0−1d

)(
Pn0−1

Qn0

) 1
2
(ξ−1)

(cD − Cd)
(57)

X6 =
(c− C)

(
Qn0
Pn0

) 1
2
(ξ+1)

+
(
c ξ−1
ξ+1γn0−1 − ξ+1

ξ−1C
)(

Pn0−1

Qn0

) 1
2
(ξ−1)

(cD − Cd)
(58)

Step 2 (Qn)
N
n=1 solves (9) for n0 iff Qn0 obeys (43) of the Outside-In Recursion.

We first simplify B̃ and b̃ from (53). By (38) and the second expression in (41) at n = n0−1,

0 =
∑

k≤n0−1

ϕkf

(
Qk

Pn0−1

)
=

∑
k≤n0−1

ϕk

(
η

1− η

(
Qk

Pn
− ξ − 1

ξ + 1

)
+

2

ξ + 1

(
Qk

Pn0−1

) ξ+1
2

)

⇒ B̃ ≡

∑
k≤n0−1

ϕk

(
Qk

Pn0−1

) 1
2
(ξ+1)

∑
k≤n0−1

ϕk
=

η

1− η

ξ + 1

2

(
ξ − 1

ξ + 1
−
Qn0−1

Pn0−1

)
(59)
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And similarly, applying the second equation in (42) to memory state n0 + 1 yields

b̃ ≡

∑
k≥n0+1 ϕk

(
Pn0
Qk

) 1
2
(ξ−1)∑

k≥i ϕk
=

η

1− η

ξ − 1

2

(
Q

n0+1

Pn0

− ξ + 1

ξ − 1

)
(60)

Now, (61) and (62) below give, respectively, the expressions D − d and D ξ+1
ξ−1 − ξ−1

ξ+1γn0−1d

η

1− η

2ξ

ξ + 1

(
Qn0+1

Pn0

− ξ + 1

ξ − 1

)
−
(
ξ + 1

ξ − 1
− β(γn0−1)

)(
1− γ

ξ−1
2

n0−1

)
b̃ (61)

η

1− η

2ξ

ξ − 1

(
Qn0+1

Pn0

− ξ − 1

ξ + 1
γn0−1

)
+ (1− γn0−1) b̃ (62)

And (63) and (64) give, respectively, the expressions c− C and c ξ−1
ξ+1γn0−1 − ξ+1

ξ−1C:

η

1− η

2ξ

ξ + 1

(
ξ + 1

ξ − 1
−
Qn0−1

Pn0−1
γn0−1

)
+ (1− γn0−1) B̃ (63)

η

1− η

2ξ

ξ − 1
γn0−1

(
ξ − 1

ξ + 1
−
Qn0−1

Pn0−1

)
−
(
ξ + 1

ξ − 1
− β(γn0−1)

)(
1− γ

ξ−1
2

n0−1

)
γn0−1B̃ (64)

First consider (61). By (60) the first term is 4ξ
ξ2−1

b̃, so it simplifies, using (44), as:

D − d

η
1−η

ξ+1
2

(
1−

(
ξ−1
ξ+1

)2
γn0−1

) = γ
1
2
(ξ−1)

n0−1

(
Q

n0+1

Pn0

− ξ + 1

ξ − 1

)
≡ X1 (65)

And plug B̃ = η
1−η

ξ+1
2

(
−4ξ
ξ2−1

+ ξ+1
ξ−1 − Qn0−1

Pn0−1

)
from (59) into (63) and simplify to get:

c− C

η
1−η

ξ+1
2

(
1−

(
ξ−1
ξ+1

)2
γn0−1

) =

(
ξ + 1

ξ − 1
−
Qn0−1

Pn0−1

)
≡ X3 (66)

By similar computations, plugging (59) into (64) and (60) into (62) and collecting terms,

D ξ+1
ξ−1 − ξ−1

ξ+1γn0−1d

η
1−η

ξ+1
2

(
1−

(
ξ−1
ξ+1

)2
γn0−1

) ≡ X2 and
c ξ−1
ξ+1γn0−1 − ξ+1

ξ−1C

η
1−η

ξ+1
2

(
1−

(
ξ−1
ξ+1

)2
γn0−1

) ≡ X4 (67)

while
cD − Cd

η
1−η

ξ+1
2

(
1−

(
ξ−1
ξ+1

)2
γn0−1

) =
η

1− η

ξ − 1

2
(X2X3 −X1X4) (68)
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With these, expressions (57) and (58) directly simplify to those in (45), while plugging (45)

into (56) and multiplying by η
1−η

ξ−1
2 (X2X3 −X1X4) /

(
µ−Qn0−1

)
yields (43) for Qn0 . □

C.4 Existence, Uniqueness, and Bounds for n = n0

For uniqueness and to prove that Qn0 ∈ [Pn0−1, Pn0 ], we prove that expression (43) for Qn0

is (i) decreasing in Qn0 , (ii) positive at Qn0 = Pn0−1, and (iii) negative at Qn0 = Pn0 .

Step 1: Proof of (i). Consider the coefficient in (43) on µ − Qn0 . This is positive, since

Bayes consistency implies Qn0−1 ≤ µ, while by γn0−1 ≤ 1 < ξ the Xi’s in (44) obey X1 <
Q

n0+1

Pn0
− 1 < X2 and X4 < 1− Qn0−1

Pn0−1
< X3, thus X2X3−X1X4 > 0. Next take the coefficient

on
(
Qn0
Pn0

) ξ+1
2
. We claim that it has the following upper bound, which is negative by Pn0 ≥ µ:

X1−
Q

n0+1
− µ

µ−Qn0−1

X3 <

(
Q

n0+1

Pn0
− ξ+1

ξ−1

)
−

Q
n0+1

−µ

µ−Qn0−1

(
ξ+1
ξ−1 − Qn0−1

Pn0

)
(ξ+1)2

4ξ

(
1−

(
ξ−1
ξ+1

)2
γn0−1

) =

(
µ

Pn0
− ξ+1

ξ−1

)(Q
n0+1

−Qn0−1

µ−Qn0−1

)
(ξ+1)2

4ξ

(
1−

(
ξ−1
ξ+1

)2
γn0−1

)

For the middle bound: By (53) we know b̃ > 0 and B̃ > 0, so (recalling β < 1) setting b̃ = 0

gives an upper bound on D − d from (61); plug this into (65) for an upper bound on X1

(this is the first ratio in our bound above). Similarly, set B̃ = 0 for a lower bound on c− C

in (63); plug this into (66) for a lower bound on X3 (the final ratio in our bound). Finally,

the coefficient in (43) on
(
Pn0−1

Qn0

) ξ−1
2

has the following lower bound, positive by Pn0−1 ≤ µ:

X2−
Q

n0+1
− µ

µ−Qn0−1

X4 >

(
Q

n0+1

Pn0−1
− ξ−1

ξ+1

)
−

Q
n0+1

−µ

µ−Qn0−1

(
ξ−1
ξ+1 − Qn0−1

Pn0−1

)
1

γn0−1

ξ2−1
4ξ

(
1−

(
ξ−1
ξ+1

)2
γn0−1

) =

(
µ

Pn0
− ξ−1

ξ+1γn0−1

) Q
n0+1

−Qn0−1

µ−Qn0−1

ξ2−1
4ξ

(
1−

(
ξ−1
ξ+1

)2
γn0−1

)

For this, obtain a lower bound on X2 by setting b̃ = 0 in (62) and plugging into (67); and an

upper bound on X4 by setting B̃ = 0 for an upper bound on (64), then plug into (67). □.

Step 2: Proof of (ii). By Step 1, the final term in (43) is a positive coefficient multiplied by

µ−Qn0 , positive here (Qn0 = Pn0−1) by initial state restriction Pn0−1 ≤ µ. So it suffices to

prove that the sum of the first two terms is positive at Qn0 = Pn0−1, i.e. that(
X1 −

(
Qn0+1 − µ

)
µ−Qn0−1

X3

)
γ

1
2
(ξ+1)

n0−1 +X2 −
(
Qn0+1 − µ

)
µ−Qn0−1

X4 > 0 (69)
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Using (44), the LHS of this expression is(
Q

n0+1

Pn0

− ξ + 1

ξ − 1

)(
γξn0−1 +

ξ + 1

ξ − 1

)
+

4ξ

(ξ − 1)2
−
Q

n0+1
− µ

µ−Qn0−1

2ξ

ξ − 1
γ

ξ+1
2

n0−1

(
1− µ

Pn0−1
+
µ−Qn0−1

Pn0−1

)

Since Pn0−1 ≤ µ, replacing 1− µ
Pn0−1

in the final term by 0 gives lower bound:

(
Q

n0+1

Pn0

− ξ + 1

ξ − 1

)(
γξn0−1 +

ξ + 1

ξ − 1

)
+

4ξ

(ξ − 1)2
− 2ξ

ξ − 1
γ

ξ−1
2

n0−1

(
Q

n0+1
− µ

Pn0

)

=

(
Q

n0+1

Pn0

− ξ + 1

ξ − 1

)(
γξn0−1 +

ξ + 1

ξ − 1
− 2ξ

ξ − 1
γ

ξ−1
2

n0−1

)
+

2ξ

ξ − 1

[
2

ξ − 1
− γ

ξ−1
2

n0−1

(
ξ + 1

ξ − 1
− µγn0−1

Pn0−1

)]

The first bracketed term is proportional to b̃ > 0 by (60), (53). The second bracketed term

is also positive: It decreases in γn0−1, with derivative

(
γ

ξ+1
2

n0−1 − 1

)
ξγ

ξ−3
2

n0−1 thus is at least its

value (0) at γn0−1 = 1. And the final term is positive: it’s at least its value if we replace

Pn0−1 by upper bound µ, which simplifies to
(

1
β − 1

)(
1− γ

ξ+1
2

n0−1

)
> 0 by β < 1. □.

Step 3: Proof of (iii). By Step 1, the final term in (43) is a positive coefficient multiplied by

µ − Qn0 , nonpositive here (Qn0 = Pn0) by initial state restriction Pn0 ≥ µ. So it suffices to

prove that the sum of the first two terms is negative at Qn0 = Pn0 , i.e. that

X1 −
(
Qn0+1 − µ

)
µ−Qn0−1

X3 +

(
X2 −

(
Qn0+1 − µ

)
µ−Qn0−1

X4

)
γ

1
2
(ξ−1)

n0−1 < 0

The LHS, using (44) for the first line, then γn0−1 ≡
Pn0−1

Pn0
and Pn0 ≥ µ for the inequality, is:

(
Q

n0+1

Pn0

− 1

)
2ξ

ξ − 1
γ

ξ−1
2

n0−1 −

(
Q

n0+1
− µ

µ−Qn0−1

)(
ξ + 1

ξ − 1
−
Qn0−1

Pn0−1
+ γξn0−1

(
1− ξ + 1

ξ − 1

Qn0−1

Pn0−1

))

<

(
Q

n0+1
− µ

Pn0−1

)
2ξ

ξ − 1
γ

ξ+1
2

n0−1 −

(
Q

n0+1
− µ

µ−Qn0−1

)(
ξ + 1

ξ − 1
−
Qn0−1

Pn0−1
+ γξn0−1

(
1− ξ + 1

ξ − 1

Qn0−1

Pn0−1

))

Multiplying by (µ−Qn0−1)/
(
Q

n0+1
− µ

)
, it suffices to show that the following is negative:

(
µ−Qn0−1

Pn0−1

)
2ξ

ξ − 1
γ

ξ+1
2

n0−1 −

(
ξ + 1

ξ − 1
−
Qn0−1

Pn0−1
+ γξn0−1

(
1− ξ + 1

ξ − 1

Qn0−1

Pn0−1

))

=

µγ ξ−1
2

n0−1

Pn0

− ξ − 1

ξ + 1
γ

ξ+1
2

n0−1 −
2

ξ + 1

 2ξ

ξ − 1
+

(
ξ − 1

ξ + 1
− Qn0−1

Pn0−1

)(
2ξ

ξ − 1
γ

ξ+1
2

n0−1 − 1− ξ + 1

ξ − 1
γξn0−1

)
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The final bracketed expression is increasing in γn0−1, with derivative ξ ξ−1
ξ+1γ

ξ−1
2

(
1− γ

ξ−1
2

)
,

and thus is at most its value at upper bound (0) γn0−1 = 1. The second last bracketed term

is proportional to B̃ > 0 from (59). And the first bracketed term is decreasing in Pn0 ≥ µ,

thus at most its value at Pn0 = µ, which simplifies to (1− γ
1
2
(ξ−1))(β − 1) < 0 (by β < 1). □

C.5 Computing Vectors ρH and ρL

To derive equation (45): The final paragraph of Appendix C.3 derived theX5 = (
∑

k≤n0−1 ρ
L
k )/ρ

L
n0

and X6 = (
∑

k≥n0+1 ρ
L
k )/ρ

L
n0

expressions. For ρLn0
use 1 =

∑
ρLk ≡ ρLn0

(1 + X5 + X6). For

ρL1 and ρLn , use the definitions ϕj = ρLj /ρ
L
1 and Φj ρ

H
j /ρ

H
N along with Bayes rationality to

rewrite X5 and X6 as X5 ≡ ρL1

(∑
j≤n0−1 ϕj

)
/ρLn0

and X6 ≡ ρLN

(∑
j≥n0+1 ϕj

QN
Qj

)
/ρLn0

. □

D Optimal Memories When N = 2

D.1 Setting Up the Optimality Conditions

To derive (16): By Part 1 of Definition 1, beliefs in memory state 1 are simply Q1 = P1x. In

n0 = 2, we simplify (43) as follows, noting that the highest cutoff (here P2) is ∞, thus the

first of its three expressions vanishes as do X1 and X4 from (44) using γn0−1 ≡ P1/P2 = 0:

(
P1

Q2

) ξ−1
2
(
µ− P1x

Q2 − µ

)
=

η

1− η

ξ − 1

2
X3, where X3 =

ξ + 1

ξ − 1
− x by (44) (70)

To derive (17), we now compute the post-amnesia payoffs. By (12) and (10), these solve

(
η

1−η + λθ1,2 −λθ1,2
−λθ2,1

η
1−η + λθ2,1

)(
1−η
η νθ1

1−η
η νθ2

)
=

(
wθ
1

wθ
2

)
(71)

where wH
i ≡ Π

(
1− FH

(
log

π

ΠQi

))
and wL

i = πFL

(
log

π

ΠQi

)
(72)

Using Cramer’s rule to solve (71) for νθ2 − νθ1 , letting Γθ ≡ η
1−η + λθ1,2 + λθ2,1, we obtain:

1− η

η
(νθ2 − νθ1) =

η
1−η (w

θ
2 − wθ

1)

Γθ

So the indifference FOC, namely 1 = P1(ν
H
2 − νH1 )/(νL1 − νL2 ), becomes:

1 = P1
ΓL

ΓH

wH
2 − wH

1

wL
1 − wL

2

(73)
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To simplify, plug (15) and (14) into the Bayes consistency condition for memory state 1:

Q1 = µ
ρH1
ρL1

= µ
λH2,1

λL2,1

ΓL

ΓH
= µ

ξ − 1

ξ + 1

P1

Q2

ΓL

ΓH
⇒ P1

ΓL

ΓH
=
ξ + 1

ξ − 1

Q1Q2

µ
(74)

Plugging (74) and (72) into (73), we obtain the following FOC:

1 =
1

µ

ξ + 1

ξ − 1

Π

π
Q1Q2

FH
(
log π

ΠQ1

)
− FH

(
log π

ΠQ2

)
FL
(
log π

ΠQ1

)
− FL

(
log π

ΠQ2

) (75)

Evaluating this using F θ from (5) yields text FOC (17), noting that optimally, Q1 < π/Π <

Q2: This is immediate for Q2 by π < Πµ and Bayes consistency (Q1 < µ < Q2), and if we

also had Q1 > π/Π, then by (5) FH(log π
ΠQi

) = ξ−1
2ξ ( π

ΠQi
)
ξ+1
2 for i = 1, 2, swapping ξ+1 with

ξ−1 for FL. Then (75) fails; the final ratio exceeds ξ−1
ξ+1

π
ΠQ1

thus the RHS exceeds Q2/µ > 1.

D.2 Preliminary Comparative Statics

Rewrite (17) as follows, with x ≡ π/ΠQ1 and y ≡ π/ΠQ2, where we just established x > 1 >y:

1 =
ξ + 1

ξ − 1

π

µΠ

I

xy
, where I =

1− ξ+1
2ξ x

− ξ−1
2 − ξ−1

2ξ y
ξ+1
2

1− ξ−1
2ξ x

− ξ+1
2 − ξ+1

2ξ y
ξ−1
2

(76)

Lemma D.1 Ix ≥ 0, Iy ≥ 0, and y ≤ I ≤ x.

Proof: Directly differentiating expression I in (76) yields

x
Ix
I

=
x−

1
2
(ξ+1)(x− I)

2
ξ−1

(
1− x−

1
2
(ξ−1)

)
+ 2

ξ+1

(
1− y

1
2
(ξ+1)

) (77)

y
Iy
I

=
y

1
2
(ξ+1)

(
I
y − 1

)
2

ξ−1

(
1− x−

1
2
(ξ−1)

)
+ 2

ξ+1

(
1− y

1
2
(ξ+1)

) (78)

It is immediate from (77) and (78) the third Lemma D.1 claim implies the first two, so it

suffices to show y ≤ I ≤ x. Suppose (toward a contradiction) I < y < x. Then Iy < 0 < Ix

(by (77) and (78)), so since x > 1 > y, setting x = y = 1 yields a lower bound on I:

I ≥
1− ξ+1

2ξ − ξ−1
2ξ y

1
2
(ξ+1)

1− ξ−1
2ξ − ξ+1

2ξ y
1
2
(ξ−1)

≥ lim
y↑1

− ξ−1
2ξ

ξ+1
2y y

1
2
(ξ+1)

− ξ+1
2ξ

ξ−1
2y y

1
2
(ξ−1)

= y
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Contradicting I < y. Similarly if I > x > y, then the above expressions yield Ix < 0 < Iy, so

x > 1 > y implies that I is at most its value at x = y = 1. First evaluating I at x = 1 and

then taking limits as y → 1 yields upper bound x, contradicting I > x. □

Lemma D.2 xIx + yIy < I

Proof: We wish to prove that the sum of the expressions in (77) and (78) is smaller than

1, i.e. (multiplying through by their common denominator) that

x−
1
2
(ξ+1)(x− I) + y

1
2
(ξ+1)

(
I

y
− 1

)
<

2

ξ − 1

(
1− x−

1
2
(ξ−1)

)
+

2

ξ + 1

(
1− y

1
2
(ξ+1)

)
Adding (1− x−

1
2
(ξ−1))−

(
1− y

1
2
(ξ+1)

)
to both sides, this becomes

[(
1− x−

1
2
(ξ+1)

)
−
(
1− y

1
2
(ξ−1)

)]
I <

ξ + 1

ξ − 1

(
1− x−

1
2
(ξ−1)

)
− ξ − 1

ξ + 1

(
1− y

1
2
(ξ+1)

)
(79)

If both the LHS and RHS of (79) are negative, it rearranges to the following lower bound on

I (where the numerator and denominator are positive in this case):

I ≥
ξ−1
ξ+1(1− y

ξ+1
2 )− ξ+1

ξ−1(1− x−
ξ−1
2 )

(1− y
ξ−1
2 )− (1− x−

ξ+1
2 )

(80)

If both the LHS and RHS of (79) are positive, then it instead rearranges to the following

upper bound on I, again arranged so numerator and denominator are both positive:

I ≤
ξ+1
ξ−1(1− x−

ξ−1
2 )− ξ−1

ξ+1(1− y
ξ+1
2 )

(1− x−
ξ+1
2 )− (1− y

ξ−1
2 )

(81)

We also must rule out the possibility that only the RHS of (79) is negative, while it holds

trivially if only the LHS is negative. Lastly, from slightly rearranging (76), we actually have

I =

ξ−1
ξ+1

(
1− y

1
2
(ξ+1)

)
+
(
1− x−

1
2
(ξ−1)

)
(
1− y

1
2
(ξ−1)

)
+ ξ−1

ξ+1

(
1− x−

1
2
(ξ+1)

) (82)

Comparing these expressions, it suffices to prove the following inequality:

ξ−1
ξ+1

(
1− y

1
2
(ξ+1)

)
(
1− y

1
2
(ξ−1)

) <
ξ + 1

ξ − 1

(
1− x−

1
2
(ξ−1)

)
(
1− x−

1
2
(ξ+1)

) (83)
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For then the bound in (80) is below the smaller LHS expression in (83), the bound in (81)

exceeds the larger RHS expression in (83), and I from (82) lies between the two bounds in

(83). And (83) also ensures that if the RHS of (79) is negative, then so is the LHS.

Finally we prove that (83) indeed holds, namely that its LHS is at most 1 while its RHS

is at least 1. Recall that x ≥ 1 ≥ y. First differentiate to obtain that the LHS of (83) is

increasing in y whenever the following (derivative in y) is positive:

−ξ + 1

2y
y

1
2
(ξ+1) +

ξ − 1

2y
y

1
2
(ξ−1)

(
1− y

1
2
(ξ+1)

)
(
1− y

1
2
(ξ−1)

) > 0 ⇔ ξ − 1

ξ + 1

(
1− y

1
2
(ξ+1)

)
(
1− y

1
2
(ξ−1)

) > y

I.e. whenever it exceeds y. So either the LHS is below y ≤ 1, or it’s increasing in y and thus

at most its value as y ↑ 1, which by l’hopital’s rule is 1. And by a symmetric argument, the

RHS of (83) is increasing in x whenever it is smaller than x. So either it exceeds x ≥ 1, or

it’s increasing in x and thus at least its limit as x ↓ 1, which by l’hopital’s rule is 1. □

Lemma D.3 The RHS of (76) is decreasing in π/Π and in µ.

Proof: The µ part is obvious. For π/Π, recalling that x = π/ΠQ1 and y = π/ΠQ2 depend

on it, the derivative of the RHS of (76) in π/Π is

I

xy
+
π

Π

[
∂

∂x

(
I

xy

)
· dx

d(π/Π)
+

∂

∂y

(
I

xy

)
· dy

d(π/Π)

]
=

I

xy
+
π

Π

[
Ix − I

x

xy

1

Q1
+
Iy − I

xyx

xy

1

Q2

]

=
I

xy
+

[
xIx − I

xy
+
yIy − I

xy

]
,using

1

Q1
≡ Πx

π
and

1

Q2
≡ Πy

π

This is negative iff xIx + yIy − I < 0, which we proved in Lemma D.2. □

Lemma D.4 The LHS of (70) falls in Q2 and rises in P1; x and the RHS of (70) rise in η.

Proof: The LHS claim regarding Q2 follows by immediate inspection, since belief consis-

tency demands Q2 > µ. For P1, differentiate to find that the LHS of (70) increases in P1 iff
µ
P1
> ξ+1

ξ−1x; this holds since by (38) the root x of f is smaller than ξ−1
ξ+1 , while optimality of

n0 = 2 implies P1 < µ. For x, rewrite the equation f(x) = 0 as follows:

η

1− η
x−

1
2
(ξ+1)

(
ξ − 1

2
− ξ + 1

2
x

)
= 1 (84)
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Since the LHS clearly rises with η and falls with x (recalling x < ξ−1
ξ+1), it can only remain

constant at 1 if x rises with η. And finally, using using (84) to replace η/(1− η), the RHS of

(70) is proportional to x
1
2
(ξ+1) ξ+1−(ξ−1)x

ξ−1−(ξ+1)x ; this rises in x which we just showed rises with η.

D.3 Completing the Proof of Proposition 3

Step 1 The RHS of the FOC (17) increases in both Q1 and Q2.

Recalling x ≡ π/ΠQ1 and y ≡ π/ΠQ2, it suffices to show that the RHS of equivalent FOC

(76) falls in x and y, i.e. that I/xy falls in x and y. This follows from combining the

Lemma D.1 result that xIx/I and yIy/I are both positive, with the Lemma D.2 result that

they sum to less than 1. Thus xIx/I < 1, so I/x falls in x, and similarly I/y falls in y.

Step 2 If η rises, the Bayesian constraint (70) requires that either P1 rise or Q2 fall (or

both). Also, fixing η and ξ, an increase in P1/µ leads to an increase in both Q1/µ and Q2/µ.

For the first assertion, we know from Lemma D.4 that an increase in η leads to an increase

in the RHS of (70), and also an increase in x which (by immediate inspection, recalling

Q1 < P1 < Q2) lowers the LHS of (70). So it must be accompanied by another change that

increases the LHS of (70). By Lemma D.4, this is to either raise P1 or lower Q2. For the

second assertion, Lemma D.4 directly shows that with no change in µ, Q2 and P1 must move

the same direction to hold the LHS of (70) constant, and Q1 does too since Q1 = P1x. If µ

also changes, simply divide numerator and denominator in the LHS of (70) by µ, and apply

identical logic to P1/µ, Q1/µ, and Q2/µ.

Step 3 (Existence and Uniqueness) There is a unique solution to (76) and (70)

For existence, observe that for any P1, there is a unique Q2 satisfying belief constraint (70)

by the Intermediate Value Theorem (IVT), since the LHS is decreasing (and continuous) in

Q2 by Lemma D.4, and tends to ∞ as Q2 → 1, and 0 as Q2 → ∞. So, for any Q1, let Q
∗
2(Q1)

be the Q2 that solves (70). Next, notice that for any Q2, the RHS of (76) tends to zero as

x → ∞ i.e. Q1 = 0, while we established at the end of Section D.1 that it is too large at

x = 1 ⇔ Q1 = π/Π. So again by the IVT, a solution Q1 to (76) (with Q2 = Q∗
2(Q1)) exists.

For uniqueness, consider a solution (Q1, Q2) to (76) and (70). If we increase Q1 = P1x, Q2

must also increase by Step 2. But then (76) fails: both changes increase its RHS by Step 1.

Step 4 (Comparative Statics in π/Π and µ) The optimal P1 rises with π/Π and µ.
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By Lemma D.3, the RHS of (76) falls in π/Π and in µ, so must be accompanied by an

offsetting increase. By Step 1 of this proof, this requires increasing Q1 and/or Q2, but by

Step 2, Q1/µ, Q2/µ, and P1/µ all move in the same direction. Thus P1,Q1, and Q2 all rise.

Step 5 (Comparative Static in η) As η rises, Q1 rises and Q2 falls.

Since increasing η has no direct effect on FOC (76), Q1 and Q2 must move in opposite

directions. This cannot happen if Q2 rises; for then by Step 2, P1 also rises, as does x by the

second assertion in Lemma D.4, thus so does Q1 = P1x. □.

D.4 Payoffs

The value in (11) is π times

µΠ

π

[
ρH1

wH
1

Π
+ ρH2

wH
2

Π

]
+

[
ρL1
wL
1

π
+ ρL2

wL
2

π

]
(85)

Since probabilities sum to 1 and Qi = µρHi /ρ
L
i , µ(ρ

L
1 + ρL2 ) = µ = ρL1Q1 + ρL2Q2. Solving,

ρH1 =
Q1 (Q2 − µ)

µ(Q2 −Q1)
and ρH2 =

Q2(µ−Q1)

µ(Q2 −Q1)
, ρL1 = µ

ρH1
Q1

, ρL2 = µ
ρH2
Q2

Plugging these into (85), along with (72) and (5) for wθ
i , recalling Q1 <

π
Π < Q2, it becomes

Q2 − µ

Q2 −Q1

(
1

ξ

(
ΠQ1

π

) 1
2
(ξ+1)

+ 1

)
+

µ−Q1

Q2 −Q1

(
ΠQ2

π
+

1

ξ

(
π

ΠQ2

) 1
2
(ξ−1)

)
(86)

E Omitted Value Function Proofs for Section 6

A. Proof of Lemma 3: Strict Convexity.

Step 1 Dug Benefits from Delay if the Next Shock is a Decision Shock:

pΠ(1− FH(ℓ̂− ℓ(p)) + (1− p)πFL(ℓ̂− ℓ(p))− u(p) > 0 (87)

If p ≥ p̂ (symmetric steps apply if p ≤ (̂p)), (87) reduces using u(p) = pΠ and P ≡ p
1−p as:

−pΠ
(
1− FH log

( π

ΠP

))
+ (1− p)π

(
1− FL log

( π

ΠP

))
> 0 ⇔ PΠ

π

(
FH log

(
π
ΠP

)
FL log

(
π
ΠP

) ) < 1

This holds by (5): for P ≥ π
Π , the final bracketed ratio is ξ−1

ξ+1
π
ΠP . □.
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Step 2 Dug Prefers Amnesia Shocks be Delayed:
∑

n λ
θ
n(p)ν

θ
n ≥ νθk for p ∈ [pk−1, pk)

By (5), FH increases in α, while νHn increases in n by Lemma 2. Thus, fixing p:

∑
n

∂λHn (p)

∂α
νHn =

∑
n

∂FH(ℓ(pn)− ℓ(p))

∂α
(νHn − νHn+1) < 0

And if p is in memory state k, then limα→∞ λHk (p) = 1 ⇒
∑

n

(
limα→∞ λHn (p)

)
νHn = νHk .

Altogether, for fixed p, the sum
∑

n

(
limα→∞ λHn (p)

)
νHn converges to νHk from above. Similar

steps apply in state θ = L. □.

Step 3 Vn is strictly convex for each n.

Subtracting (22) from a (1− p, p) weighted average of (18) and (19) we discover:

0 = η
(
pΠ(1− FH(ℓ̂− ℓ(p)) + (1− p)πFL(ℓ̂− ℓ(p))− u(p)

)
+(1− η)

(∑
n

(pλHn (p)νHn + (1− p)λLn(p)ν
L
n )− νn(p)

)
− 2p2(1− p)2

(α+ δ)σ2
V ′′
n (p)

Since the first two terms are strictly positive by the first two Steps, we have V ′′
n (p) > 0. □

B. Proof of Proposition 4. We work with likelihood ratios Q(ℓ) = eℓ, Qn ≡ qn/(1− qn)

and Pn ≡ pn/(1−pn). Fix an optimal policy, and in a further abuse of notation, define λθn(Q)

as the transition chance (in θ) from belief Q to memory state n by the next distraction shock

(as in (37) but replacing Qn by Q); and define wθ(Q) as the payoff starting from belief Q

conditional on next shock a decision, in θ (given by (10), replacing Qn by Q).

Step 1: Distraction Shocks. Let G(Q) be the gain with no distraction shock at belief Q,

namely Q(V H
n (Q)− νHn )+V L

n (Q)−nuLn . By (18) and (19), recalling νθn = V θ
n (Qn) from (12):

G(Q) = η
(
Q(wH(Q)− wH(Qn)) + (wL(Q)− wL(Qn))

)
(88)

+ (1− η)

(∑
k

Q(λHk (Q)− λHk (Qn))ν
H
k + (λLk (Q)− λLk (Qn))ν

L
k

)
(89)

Notice that G(Qn) = 0, and so since G is convex in Q by Lemma 3), it suffices to prove that

G′(Qn) = 0, i.e. the gain reaches a minimum of 0 at Q = Qn. For this, first consider the η

coefficient in (88). The derivative in Q, evaluated at Q = Qn, is Qn(w
H)′(Qn) + (wL)′(Qn),

which is zero by Step 1 in the Appendix B proof. Next consider (89). Using λθn(Q) =

1 −
∑

k ̸=n λ
θ
k(Q), rewrite it replacing each νθk with νθk − νθn and summing only over states
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k ̸= n. Consider this sum for states k ≤ n − 1 (a symmetric argument applies for states

k ≥ n+ 1). First rewrite with cumulative transition chances and incremental payoff gaps:

∑
k≤n−1

(λθk(Q)− λθk(Qn))(ν
θ
k − νθn) =

∑
k≤n−1

(
F θ

(
log

Pk

Q

)
− F θ

(
log

Pk

Qn

))
(νθk − νθk+1)

Now take Q times this expression in θ = H, plus this expression in θ = L (this is the

coefficient in (89) for memory states k ≤ n− 1). The derivative in Q, at Q = Qn, is:

∑
k≤n−1

[
Qn

∂

∂Qn

(
FH

(
log

Pk

Qn

))
(νHk − νHk+1) +

∂

∂Qn

(
FL

(
log

Pk

Qn

))
(νLk − νLk+1)

]
(90)

But from (5), recalling that hereQ ≥ Pk by construction, we have F
H
(
log Pk

Q

)
= ξ−1

2ξ

(
Pk
Qn

) ξ+1
2
,

and in state θ = L just swap ξ + 1 and ξ − 1. Using this, evaluate the derivative in (90) as

follows, which vanishes (as desired) by the indifference FOC in Proposition 1:

ξ − 1

2ξ

ξ + 1

2Qn

(
Pk

Qn

) ξ−1
2 ∑

k

[
Pk(ν

H
k+1 − νHk )− (νLk − νLk+1)

]
(91)

Step 2: Decision Shocks. We prove that if Q < π/Π, the gain to learning is positive

∀Q ≥ P1, while if Q < P1 it is increasing in Q and negative at Q = 0. Converting (18) and

(19) to likelihood ratios, 1 +Q times the gain to learning is:

Q

(
ηwH(Q) + (1− η)

N∑
n=1

λHn (Q)νHn

)
+

(
ηwL(Q) + (1− η)

N∑
n=1

λL(Q)νLn

)
− π (92)

This is negative as Q ↓ 0: For then by (37), Dug has zero chance of leaving state 1 by the

next shock, so (92) reduces using (96) to ηπ + (1 − η)νL1 − π. This is negative if νL1 < π,

which holds since combining (12) and (20) yields νL1 < ηwL
1 + (1 − η)νL1 ⇒ νL1 < wL

1 , while

Corollary 1 implies that P1 hence Q1 is strictly positive, so by (10), wL
1 < π.

Next, decompose (92) as follows, letting 1 ≤ k ≤ N be the index with Pk−1 ≤ Q < Pk:

η
(
QwH(Q) + wL(Q)

)
+ (1− η)

(
QνHk + νLk

)
− π (93)

−(1− η)
k−1∑
n=1

(QλHn (Q)(νHk − νHn )− λLn(Q)(νLn − νLk )) (94)

+(1− η)
N∑

n=k+1

(QλHn (Q)(νHn − νHk )− λLn(Q)(νLk − νLn )) (95)
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It remains to prove that this is increasing inQ < P1 (k = 1) and positive whenQ ≥ P1(k ≥ 2).

First consider (94), if k ≥ 2 (otherwise it vanishes). Since Q ≥ Pk−1 ≥ Pn for all terms in this

sum, we have from (37) that λHn (Q) = ξ−1
2

(
Pn
Q

) 1
2
(ξ+1)

(
1− γ

1
2
(ξ+1)

n−1

)
, and just swap ξ + 1

with ξ − 1 to obtain λLn(Q). With this, using β from (40), (94) becomes (1− η) times

ξ + 1

2ξ

k−1∑
n=1

(
Pn

Q

) 1
2
(ξ−1)(

1− γ
1
2
(ξ−1)

n−1

)
[(νLn − νLk )− β(γn−1)Pn(ν

H
k − νHn )]

This is positive, by β(γn−1) < 1 along with the Proposition 1 FOC
νHn+1−νHn
νLn−νLn+1

= 1
Pn

: Thus

Pn
νHk −νHn
νLn−νLk

is a weighted average of terms Pn
Pn
, Pn
Pn+1

, ..., Pn
Pk−1

which are at most 1 by k− 1 ≥ n.

Similarly rewrite (95) as 1−η times the following, using transition chances forQ ≤ Pk ≤ Pn−1:

ξ + 1

2ξ

N∑
n=k+1

(
Q

Pn−1

) 1
2
(ξ+1)(

1− γ
1
2
(ξ−1)

n−1

)
[Pn−1(ν

H
n − νHk )− β(γn−1)(ν

L
k − νLn )]

This is positive and increasing in Q, since each square bracketed term is positive again using

β ≤ 1 and the Proposition 1 implication that Pn−1
νHn −νHk
νLk −νLn

≥ 1.

Finally we prove that (93) is increasing in Q, and positive at Q ≥ P1. Clearly the

coefficient on 1 − η in (93) is increasing in Q, and to see that the coefficient on η is too,

use (10) to rewrite it (QwH(Q) + wL(Q)) as

QΠ
ξ + 1

2ξ

(
ΠQ

π

) 1
2
(ξ−1)

+ π

(
1− ξ − 1

2ξ

(
ΠQ

π

) 1
2
(ξ+1)

)
= π

(
1 +

1

ξ

(
ΠQ

π

) 1
2
(ξ+1)

)
(96)

To complete the proof, we prove that (93) is positive at Q = P1 (k = 2). Since the coefficient

on η exceeds π by (96)), it suffices to show that the one on 1−η does too, i.e. P1ν
H
2 +νL2 ≥ π.

For this, it suffices to prove that Q1ν
H
1 + νL1 ≥ π, since by Proposition 1,

P1
νH2 − νH1
νL1 − νL2

= 1 ⇒ P1ν
H
2 + νL2 = P1ν

H
1 + νL1 ≥ Q1ν

H
1 + νL1 (97)

Now rearrange (12) to obtain η(νθ1 − wθ
1) = (1− η)

∑
n≥2 λ

θ
1,n(ν

θ
n − νθ1). Taking ratios,

νH1 − wH
1

wL
1 − νL1

=

∑
n≥2 λ

H
1,n(ν

H
n − νH1 )∑

n≥2 λ
L
1,n(ν

L
1 − νLn )

>
1

Q1
, since

λH1,n(ν
H
n − νH1 )

λL1,n(ν
L
1 − νLn )

≡ 1

β(γn−1)

Pn−1

Q1

νHn − νH1
νL1 − νLn

(which exceeds 1
Q1

again using β < 1 along with the FOC’s in Proposition 1). So Q1ν
H
1 + νL1

exceeds Q1w
H
1 + wL

1 , which by (96) at Q = Q1 exceeds π. □.
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F Proofs for Value Comparative Statics in Section 7

A. Proof of Proposition 5. To prove that Dug’s value falls in both σ and δ, it suffices

to prove that it falls in both η ≡ δ
α+δ and in ξ ≡

√
1 + 2(α+ δ)σ2. For η, consider the value

V θ from (11). The terms wθ
n from (10) do not depend on η, so we focus on the changes

via ρθ. Recall that by (8), ρθ is the steady-state distribution of a perturbed Markov process

where Dug is constrained, in every memory state, to jump to initial state n0 with chance

η. So lowering η relaxes this constraint, and thus Dug’s optimized value falls in η. For

ξ, differentiate (5) to see that FH rises in ξ, while FL falls in ξ. Thus raising ξ has two

implications for any fixed policy: First, the expected values wH
n and wL

n from (10) both fall,

(reducing the value). Second, the cdf
∑K

k=1 λ
θ
n,k rises when θ = H, and falls when θ = L. In

state H, this induces a first-order stochastic decrease in λHn,k, thus reducing the expectation

of increasing (by Lemma 2) function νHn , and hence reducing V H . And similarly in state L,

where a first order increase lowers the expectation of decreasing function νLn .

B. Proof of Proposition 6. For the limits as α ↓ 0 and N ↑ ∞: That the limits are the

same follows from (21), which at α = 0 reduces to the standard HJB equation, reflecting

rational (N = ∞) learning. The α = 0 limit value was explained in the text.

For the limits σ → 0, δ → ∞, σ → ∞, and α → ∞: If V∗(1) and V∗(∞) share a limit,

then this must be the limit for all N , since V∗(N) is increasing in N . This logic yields the

result for α + δ → 0, σ → 0, δ → ∞, and σ → ∞. Now consider the α → ∞ limit, so

η → 1 and ξ → ∞. Then ρθn0
→ 1, and so Qn0 → µ, thus F θ(log(π/(ΠQn0))) → 0, and so

V ∗(N) → µΠ by (11).

Finally, for the limit δ ↓ 0: Since V∗ increases in N , it suffices to prove that Dug earns

VFI with two memory states. From Section 5, beliefs are given by Q1 = P1x and (16), where

x is the root of equation (38). As δ and hence η → 0, x→ 0 by inspection of (38). But then

for any P1 > 0, Q1 = P1x→ 0. And Q2 → ∞, since the RHS of (16) tends to 0 with x, thus

the LHS must too, requiring Q2 → ∞. And so taking limits in (86) as Q1 → 0 and Q2 → ∞
(recalling ξ > 1), we obtain Dug’s limit value:

lim
δ→0

V⋆(2) = π lim
Q2↑∞,Q1↓0

(
Q2 − µ

Q2 −Q1

(
1

ξ

(
ΠQ1

π

) ξ+1
2

+ 1

)
+

µ−Q1

Q2 −Q1

(
ΠQ2

π
+

1

ξ

(
π

ΠQ2

) ξ−1
2

))

= π lim
Q2↑∞

(
Q2 − µ

Q2
+

µ

Q2

ΠQ2

π

)
= π + µΠ □
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