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Abstract

We introduce a model of distracted learning mitigated by an optimal N-state memory
buffer. A decision maker (Dug) continuously updates his beliefs given an Ito signal
process. When the termination shock hits, he must choose a binary action, earning a
higher payoff if his action matches the binary state. When a distraction shock occurs,
he can only recall which one of N intervals (memory states) contained his belief when
the distraction shock hit. He maximizes his expected payoff over interval partitions of
[0, 1], and his post-distraction beliefs. Dug is optimally indifferent between memory states
at the threshold between memory states. His unoptimized value obeys smooth pasting;
optimal values are “super-smooth pasted”.

Dug is always harmed by distraction shocks, and gains at a termination shock if and
only if he is sufficiently certain of the state. His initial value rises in the number of memory
states and falls in the rate of termination shocks. Two memory states are sufficient to
secure the full information value as termination shocks become vanishingly rare.

We consider two extensions: allowing the DM to choose the optimal number of mem-
ory slots (demand for memory) or the optimal precision of the Ito process (demand for
information) given some increasing cost function.

*We thank Lones Smith for helpful suggestions throughout this project; as well as, seminar participants at
Penn State and the University of Maryland.



1 Introduction

Distraction has long been in the news, with agreement that smart phones and social net-
working have adversely impacted everything from educational outcomesﬂ to highway death
ratesﬂ (up 25% since 2010). Many studies have found that distraction results in incomplete
learning, poor recollection, and reduced cognitive controlﬁ This paper introduces a simple
novel model of distraction that treats it as a constraint on rational Bayesian learning.

We merge finite state automata and standard Bayesian rational learning to isolate the
pure impact of distraction, not conflating it with other cognitive limitations. Specifically,
we assume that a fully rational decision maker, Dugﬁ optimally learns about a low or high
true state (of the world) in continuous time, with the stochastic calculus model of |[Smith and
Moscarini (2001). Dug knows that he faces unpredictable distractions that disrupt his train
of thought. At those random moments, Dug forgets his precise posterior belief and reverts to
a finite state belief buffer, as explored in Wilson| (2014). Loosely, the memory states act as
distraction insurance for the Bayesian rational Dug. What is the optimal design of this finite
state automaton? How does it impact behavior, and how much does it impede his learning?ﬂ

Dug designs a memory policy at time zero, which — along with his current posterior belief
(in the high true state) — dictates his belief after a distraction. Specifically, a memory policy
partitions beliefs [0, 1] into N memory states. Per usual, we assume these states are intervals.
The memory policy assigns a belief ¢, to each memory state n. Thereafter Dug continuously
observes a flow signal of the state, obscured by Wiener noise. Between distraction shocks, his
posterior belief in the high state adjusts continuously. Distraction shocks arrive exogenously
at a fixed rate, according to a Poisson process, whereupon Dug forgets the past history of the
signal process and distraction shocks, and only recalls his memory state n. When this arrival
rate vanishes, our model reduces to fully rational Bayesian learning. Post-distraction, Dug
resumes observing the signal process in continuous time, but now starting at the posterior g,,.

At some exponentially distributed time, Dug must choose a binary action, and earns an
undiscounted terminal payoff that is positive if his action matches the state and zero if it does
not. A prior bias weakly favors matching the high state. He chooses his memory policy at
time zero to maximize his expected terminal payoff, perfectly forecasting the state conditional

distributions of terminal beliefs induced by his chosen memory policy.

!See, for example, Digital Distractions In Class Linked to Lower Academic Performance (2023).

2See, for example, Wikipedia: motor vehicle fatality rate in US by year.

3See, for example, |Ophir, Nass, and Wagner| (2009).

“Inspired by Dug, the golden retriever from Pixar’s Up (2009) with his squirrel distraction moments.

®Some recent studies have found that people can learn to mitigate distractions, even with uncertainty on
when they will hit: Brain, Interrupted.


https://www.edweek.org/leadership/digital-distractions-in-class-linked-to-lower-academic-performance/2023/12
https://en.wikipedia.org/wiki/Motor_vehicle_fatality_rate_in_U.S._by_year
https://www.youtube.com/watch?v=xrAIGLkSMls
https://www.nytimes.com/2013/05/05/opinion/sunday/a-focus-on-distraction.html

The design exercise is how to partition the belief space [0, 1] into memory states — a novel
feature not yet explored in the finite memory literature — and what belief to endow Dug
with in each memory state. Firstly, as in \Wilson! (2014)), dynamically optimal beliefs should
be Bayesian consistent (Lemma|l)) in the following sense. Loosely, if Dug awakes in a memory
state, aware that he has potentially been transitioning among memory states for an arbitrarily
long time span, he should arrive at the Bayesian posterior belief g,, for that memory state. To
characterize such beliefs, we solve for the state conditional Markov transition matrix between
memory states at consecutive distraction shocks. Given this transition matrix, we solve for
the relative frequency with which distraction shocks hit in each memory state. Applying
Bayes’ rule to these relative frequencies yields a necessary condition for Bayesian consistent
beliefs. We show that these beliefs are unique for any interval partition (Proposition . Our
proof is constructive, and gives an efficient algorithm for computing numerical solutions.

Optimality entails a novel second ingredient in our model. Fixing the post-distraction
beliefs, rational Dug faces an optimal control exercise when choosing his interval policy in
order to maximize his expected payoff. Dug has a Bellman value as a function of his current
belief in each memory state. Within each memory state this value function is analogous to
undistracted learning: It is continuously differentiable, and twice continuously differentiable
except, perhaps, at the thresholds separating memory states. Also, it is locally strictly convex
in his current belief inside each memory state: Incremental information has strictly positive
value, even with a suboptimal interval policy. and contingent on a true state, value func-
tions increase in Dug’s confidence in that state. Proposition [1| derives an intuitive necessary
condition for an optimal interval policy, assuming Bayesian consistency: At a memory state
boundary, Dug is indifferent between recalling either memory state should distraction strike
at that moment. Lemma [4] establishes that for any memory policy this indifference condition
is equivalent to continuity of the second derivative of the unconditional value function at the
boundary between memory regions. Intuitively, this high order contact or super smooth past-
ing condition ensures that the value of information that Dug extracts from the signal process
is continuous. Notably, neither value matching nor smooth pasting are optimality conditions,
as both are automatically met for any interval policy. Intuitively, Dug’s future action is only
impacted after the arrival of a distraction or decision shock, with no discontinuity induced
by changing memory states before this.

The interplay of rational and distracted Dug is best seen in rational Dug’s dynamic opti-
mization. First, every distraction shock is formally a capital loss to him. Next, the decision

shocks that terminate the learning model are capital gains if and only if he is sufficiently



certain of the true state, since at these junctures he rationally fears that a distraction with
destroy his near certainty, and replace it with the less certain insurance belief of the memory
state. In other words, this is a unique learning model in which the Bayes rational value falls
below the myopic payoff (Proposition 4).

Dug’s initial value is strictly increasing in the number of memory states, and strictly
decreasing in the rate of arrival of termination shocks, and the noise in the signal process
(Proposition . We solve for the limits of his payoff in all exogenous parameters (Proposi-
tion @ One surprising result emerges: Two memory states are sufficient for Dug to secure
his full information value as the termination shock arrival rate converges to zero.

With two memory states, the optimal threshold between them is fully characterized by
Bayesian consistent beliefs along with indifference at the boundary. This threshold rises as
matching the high state becomes relatively less important, or as the high state becomes more
likely; either way, the post-distraction beliefs in both memory states rise. As decision shocks
become more frequent relative to distraction shocks, the optimal policy adjusts so that the
post-distraction beliefs in the two memory states move closer together.

In an extension inspired by Smith and Moscarini| (2001)), we consider the demand for
memory and the demand for information. For the former, we let Dug choose the number of
memory states at time zero at some additive cost. We show that the demand for memory
is robustly non-monotonic in the rate of distraction shocks. In all computed examples, the
demand for memory is hump-shaped in the rate of distraction shocks for any convex cost of
memory. For the demand for information, we instead allow Dug to choose the precision of
the noisy signal at time zero. We find that the demand for precision is also robustly non-
monotonic. In computed examples, Dug chooses more precision as distraction shocks become
more common when precision is already high (i.e., when precision is cheap), but chooses

worse information when distraction shocks become more common with costly precision.

Literature Review. There is a large literature on both finite automata and continuous
Bayesian learning. We think ours is the first paper to merge the two. The most closely related
paper is Wilson| (2014), which also explores the optimal design of an automaton to process
information about a binary state. But in that paper, both time and information were discrete:
Each period, the DM observed one of finitely many signal realizations, updated her memory
state accordingly, and retained no other information into the next period. In this paper, Dug
continuously updates his beliefs until a distraction shock hits, at which point he loses all

information beyond the current memory state. Both papers characterize the optimal use of



finite memory states. But in the discrete setup, this required carefully randomized transitions
and was tractable only when the chance of the information terminating was very small. In
this paper, Dug more simply chooses the cutoff beliefs for transitions into each memory state.
This provides enough structure to make the problem tractable for all parameters, and delivers
comparative statics that were not possible in the discrete setup.

Both papers find that ex ante optimal memory policies are incentive compatible, according
to the modified multi-self consistency notion introduced by [Piccione and Rubinstein| (1997)).
Namely, the problem can be reformulated as a multi-self game, with a new self controlling
behavior each period in the discrete setting, and, in this paper, after each distraction shock.
Under an ex ante optimal memory policy, no “self” can gain with a one-shot deviation, pro-
vided that they hold Bayesian (given available info) beliefs. Here, this means that at the
cutoff belief to switch from memory state n to n+ 1, Dug is indifferent between the continu-
ation payoffs he would obtain in these states (his “post-amnesia payoffs”) were a distraction
shock to hit. This is much stronger than continuity of his value function at the cutoffs (which
also holds), and — since the post-amnesia payoffs for N states are straightforward to compute
as the solution to N equations — this facilitates finding the optimal cutoffs .

Many papers have explored using finite-state automata to process information. In the
pioneering contribution, Hellmann and Cover|(1970) characterize e-optimal automata for dis-
tinguishing between two hypotheses after an infinite sequence of signal observations, finding
that the two memory states with the most extreme beliefs were optimally sticky, and that as
the signal becomes perfectly informative, two memory states suffice to learn the truth. |(Chat-
terjee and Hul (2023]) explore a similar set-up, focusing on approximately optimal heuristics
based on ignoring noisy signal realizations and canceling out opposing ones. A related paper
by Jehiel and Steiner| (2020) study a memoryless agent (essentially a 1-state automaton) who
can choose each period whether to acquire another signal or make a decision, and found that
this generates biases such as confirmation bias and a salience effect.

There is also a growing literature on applications of bounded memory. Dow| (1991)) ex-
plores sequential search for the lowest price, assuming the DM can only recall how he catego-
rized past prices (not their exact values), but could design the categories optimally. |Lorrechio
and Monte (2023b) studies information design with constrained capacity, where an infinite
sequence of myopic agents choose whether to invest in a project that is either Good or Bad,
their payoffs provide information to a designer, and the designer communicates one of finitely
many ratings to future agents. Ratings are updated after each observation using a stochastic

transition rule, and thus are analogous to memory states. In a follow-up paper, |[Lorrechio



and Monte| (2023a)) consider an expert who fears developing a bad reputation (as in [Ely and
Valimaki (2003))) for always recommending high-cost actions, and who thus has incentives to
recommend lower-cost actions than are actually optimal. They show that limiting informa-
tion to a finite rating system can mitigate this problem. Relatedly, Ekmekci (2011)) shows that
restricting information to a finite grid can permit experts to permanently maintain “good”
reputations (whereas (Cripps, Mailath, and Samuelson| (2004) showed good reputations are
unsustainable in a world with unlimited information). Compte and Jehiel| (2015)) explored
games played between players with finitely many mental states for tracking opponent behav-
ior and carrying out decisions. Recently, some experimental papers have looked at the extent
to which automaton models capture complexity constraints. |Liu and Miao| (2025) explores
a sender-receiver game where a biased sender chooses when to stop the flow of truthful in-
formation. The receiver has a finite-state automaton to process information, and designs it
strategically both to maximize his own payoff and to control the sender’s information flow.

More broadly, we join a large literature on complexity costs and constraints. Much of
the literature builds on the rational inattention model of |Sims| (2003), with more recent
contributions in |Matejka and McKay| (2015) and [Steiner, Stewart, and Matejka (2017)).
In these papers, the DM chooses both what to learn about, and how much to learn, given
information costs proportional to its reduction in uncertainty. |[Fudenberg, Lanzani, and
Strack| (2017)) study selective learning, where the DM recalls only a subset of experiences,
but forms beliefs assuming that what he recalls is all that occurred.

There is a large literature on learning in continuous time. Karatzas (1984) solves for
the optimal policy in a continuous time bandit model, where the state of each arm follows
an Ito diffusion when actively engaged. Bolton and Harris (1999) consider a multi-agent
generalization with positive learning externalities. We adopt the single agent, binary-state,
binary-action, continuous time learning model from Smith and Moscarini (2001), but with a
fixed experimentation level. [Fudenberg, Strack, and Strzalecki| (2018)) consider a continuum

state, binary action model with endogenous stopping with a constant flow cost of information.

2 The Model

We study how a rational risk-neutral decision maker (Dug) optimally designs a finite state
automaton, to mitigate the information loss from random distractions that interrupt his
continuous time learning.

Dug is uncertain of the true state of the world 6, fixed for all time at either H or L. His



prior likelihood ratio favoring H is pu. Eventually, at Poisson rate § > 0, a decision shock
terminates the problem. Dug must then immediately choose a one-time action, H or £: He
earns payoffs 7 > 0 if he matches state L, II > 0 if he matches state H, and zero otherwise.
Thus action H is optimal iff his terminal belief on state H exceeds p = 7/(mw + II). There is
no discounting, and we assume WLOG that the prior bias favors action H, i.e. ull > .
The model takes place in continuous time ¢t € [0, 00]. Until the decision shock hits, Dug

observes the scalar signal process S(t), obscured by Wiener noise W (t):

dS = spdt + odW (1)

where sy = 1 = —s7, and 0~! > 0 is the precision of the signal. As shown in [Bolton and

Harris| (1999)), while Dug observes (I, his unconditional beliefs p(t) evolve according to:
dp = 20~"'p(1 — p)dW (2)

At Poisson rate o > 0, Dug is hit by distraction (aka amnesia) shocks, and this erases
all but a summary statistic that Dug designs as follows: He has N > 0 available memory
states. Before learning begins, he partitions the belief space [0,1] into N distinct subsets,
transitioning to memory state n whenever beliefs drift into the nth subset. He also designates
an initial memory state ng, and assigns a belief ¢,, namely a posterior on the high state of
the world, to each memory state n. We restrict to interval policies I :[0,1] — {1,2,...,N},
described by a sequence of thresholds 0 = pg < p1 < -+ < py_1 < py = 1E| Between
distraction shocks, Dug is a rational Bayesian, and keeps track of both his exact belief p(t) at
every time ¢, and also the memory state that contains it, i.e. n with p(t) € [pp—1,pn]. When
a distraction shock occurs, he loses all information beyond the current memory state n and
its associated belief g,,. Let M be the space of such memory policies (q,p) (where q is the
vector of post-amnesia beliefs ¢, and p the vector of interval policy cutoffs pg).

As we show in the next section, any memory policy implies a unique cdf over terminal
beliefs in each state, G?(-|(q, p)). Dug wishes to maximize the associated expected terminal

payoff, namely 1/(1 + p) times the following value:

7G"(pl(a,p)) + pII(1 — G7(pl(q,p))) s.t. p(0) = gn, (3)

9Dow] (1991) argued that interval policies are informationally optimal. Although this was not in a hidden
state Bayesian world, interval policies are intuitively most informative in the sense of Blackwell (1953).




3 Preliminary Analysis and the Evolution of Beliefs

We now describe the evolution of beliefs: first continuously, between amnesia shocks, and

then discretely as Dug transitions from one memory state to the next.

A. Forecasting Beliefs at the Next Shock. It is convenient to work with the log likeli-
hood ratio ¢(p) = log(p/(1 — p)). We show in Appendix [A] that it obeys the following linear

homogeneous Ito process conditional on the state 6:
d?0 = 2sgo2dt + 20 1AW (4)

The cdf over future beliefs is well known for this case{’| Given current value £y, the change in
the log likelihood ratio £—£g at time ¢ is normally distributed with mean 2syto—2 and variance
4to~2. Using this and the fact that the decision and amnesia shocks follow independent
Poisson processes, we show in Appendix [A] that the probability that the change ¢ — £y is at

most z when the next amnesia shock hits is as follows in state H:

i — 12—?61(155) ifz>0 5
FH(z) = A e ‘ for £ = /14 2(a+0)o (5)
’52—516 2 ifxz<0

And by symmetry, the cdf over log likelihood ratio changes in state L is F'*(z) = 1—F7(—x).
Since amnesia and decision shocks are independent, F'¥ is also the cdf over £ — £ at the next
decision shock, conditional on it hitting before the next amnesia shock.

The amount of learning that transpires between shocks is fully determined by, and falling
in, &, which is a monotone function of the scaled noise, i.e. the variance of the signal process

multiplied by the arrival rate of shocks (termination plus distraction).

B. The Conditional Frequency Distribution over Memory States. We now derive
the long-run distribution over memory states for memory policy (q,p). Let )\fl’ +(d, p) be the
chance of a transition from memory state n to memory state k£ between adjacent amnesia
shocks, conditional on: (a) state 6, (b) no intervening decision shock, and (¢) assuming post-
amnesia belief ¢, in state n. Between shocks, Dug is engaged in standard Bayesian rational

learning, and so, noting that the cdf F? over beliefs at the next amnesia shock is independent

"See Example 2 on page 217 of [Karlin and Taylor| (1981).



of the memory policy, we have:

Mni(a,P) = FO(U(pr) — £(an)) — F*(E(pi—1) — £(gn)) (6)

Given these transition chances, the conditional distribution over memory states after ¢

amnesia shocks, pft = (p(i’t, . ,p?\’,t), obeys the difference equation (suppressing p and q):

Pt — N0 ot (7)

Now let n = 0%5 denote the chance that a decision shock occurs before the next amnesia
shock, and let A’ be the matrix with (4, j)th entry (1 —n))\g’i. With p° the initial distribution
(ph, =1 in both states § = H, L), iterate to obtainﬁ

P’ =np” + (1= n)p” + (1 —n)?p"? + .. = (I =A%) (8)

The vector p? given by is the frequency distribution for memory states across amnesia
shocks given 6, and thus, p! is the chance that Dug will be in memory state n at the final
amnesia shock prior to termination. We can use p? both to compute his payoff (from ),

and also to determine the Bayesian beliefs q consistent with a given interval policy p.

C. Bayesian Consistent Beliefs. A Bayesian observer who knows the memory policy,
and that Dug just experienced a distraction shock in memory state n, would conclude that
Pr[0 = H] = p/(pX + pL). Thus, we call beliefs Bayesian consistent if they obey the

following fixed point equation:

dn =1 <p111{> [(I — AH(qv p))_lpo]n v (9)

1—q, ok ) =T = A (a,p) 0,

From |Wilson| (2014), this captures the fact that if Dug updates knowing he potentially has
been wandering between memory states for an arbitrarily long period of time, he would arrive
at the same posterior in memory state n as if he just accepts the belief g,,. But here there is
a critical complication that did not arise in the discrete model. There, the DM transitioned
based on signal observations, so transition chances were independent of his beliefs. Here,
Dug instead transitions when his belief drifts into a new interval between shocks, and so

the chance that this happens depends on his belief at the last shock. That is, Bayesian

8This part is identical to [Wilson| (2014), just counting amnesia shocks instead of discrete time periods, and
with 7 the chance of termination before the next amnesia shock.



consistency demands that the beliefs q we use to compute transition chances and hence p?,
agree with those we compute based on long-run frequencies p /pL. We prove in Section |4 I

that equation @ indeed has a unique solution q for any interval policy p.

D. Reformulating Dug’s Objective Function. Let V! (g, p) denote the expected payoff
starting at time zero, conditional on state #. To compute VY, first let wz be the expected
payoff starting just after an amnesia shock in memory state n given that the decision shock

hits before another amnesia shockl

wil =11 (1 —FH <10g (W))) and wr =7FF <log <7T(1H_qnq”))> (10)

With this, recalling that p is the chance that Dug is in memory state n when hit by the

final amnesia shock before termination, we can rewrite his objective function in as:

" (a,p) + V" (q,p), where V’(q, p Zp (11)

Finally, we calculate Dug’s post-amnesia payoffs, which we will use to determine the
optimal interval policy. Let vf be the expected payoff immediately following an amnesia
shock in memory state n, given 6, which are the unique fixed points to the contraction
mapping:

TVl = nuwl + ( Z)‘nkl/k: (12)

In other words, starting the moment after a distraction shock in memory state n, Dug an-

ticipates that either a decision shock comes next (chance 1) and the value is w?

, or another
distraction shock hits next (chance 1 —7) and his rational learning takes him to the memory

states with the computed chances in @

4 Optimal Memory Policies

We now characterize optimal memory policies. We first highlight that, unlike in the existing
discrete-time automata models, Dug’s objective function in depends directly on his post-
distraction beliefs q, since these influence both the long-run distribution p? from and the

payoffs wz from . One could imagine that if Dug could freely choose the beliefs attached

9This is the payoff from matching the state 6, multiplied by the chance that between the final amnesia
shock (in memory state n) and the decision shock, Dug’s belief likelihood ratio drifts from ¢, /(1 — g») above
the threshold to choose action H when 8 = H, or below this threshold when 8 = L



to his memory states, he might deviate from Bayesian consistency. But we find that this is

in fact not optimal:
Lemma 1 In an optimal memory, beliefs are Bayesian consistent, i.e. obey @D

It is intuitive that optimal beliefs are Bayesian. After all, why would Dug want to endow
his future self with beliefs that do not optimally condition on all available information?
The next result characterizes optimal interval thresholds p, finding that Dug wants to

transition to the memory state with the highest expected post-amnesia payoft:

Proposition 1 (FOCs for Interval Thresholds) Fizing Bayesian consistent beliefs q,

V(p,q)

<
<0
opn  ~

pnyf + (1 - pn)”r% ; pnlj?]l;{i’l +(1— pn)”#d =
The optimal threshold p, leaves Dug indifferent between his expected post-distraction payoffs

i memory states n and n + 1:
pn’/ri[ +(1- pn)’/ﬁ = pn’/f-s—l +(1- pn)’/£+1 (13)

The memory states act as insurance for Dug. If a distraction shock were to hit when
rational Dug is exactly indifferent between memory states, he would secure identical payoffs
from exercising either memory state insurance. This relates to existing results on incentive
compatibility of optimal policiesm Namely, viewing Dug as a new “self” after each amnesia
shock, this says that he cannot improve his post-amnesia payoff with a one-shot deviation.
The slight diﬂerenc@ is that Dug’s post-distraction payoff differs from his continuation payoff
at the time he transitions, since a distraction has not yet happened at this point. But since
the signal process, learning between shocks, and the arrival rate of shocks are independent
of the memory policy, the interval cutoffs only impact the mapping from current beliefs to
post-amnesia beliefs.

The proof of this result (in Appendix [Bf) shows more strongly that Dug could not achieve
any higher value even if he could condition his interval policy on where amnesia last struck,
thus potentially associating each memory state n with a different vector p of thresholds. All

of Dug’s post-amnesia selves would choose the same vector of thresholds.

10Piccione and Rubinstein| (1997) first formulated this modified multiself consistency notion of incentive
compatibility, and established it as an implication of ex ante optimality.

1 Our proof is necessarily more involved. The first step is standard, showing that the derivative of Dug’s
payoff in a given transition chance is proportional to the continuation payoff gain from this transition. But
Dug doesn’t directly choose transition chances: He chooses thresholds, each of which impacts many transition
chances, along with indirectly affecting payoffs through changes in post-amnesia beliefs.

10



A memory policy is interior if it uses every memory state, i.e. 0 < p; < --- <pny_1 < L.
We use the first Proposition [l result to establish (Appendix[B.1]) that optimal memory policies

are interior; and thus, that Dug’s payoff strictly increases in the number of memory states.
Corollary 1 Optimal memory policies are interior, so Dug’s value strictly increases in N .

Finally, we establish that Bayesian consistent beliefs are well-defined. As explained fol-
lowing @, this is complicated by the fact that we need to know Dug’s beliefs to determine his
long-run distribution p? over memory states, and in turn need this distribution to compute
beliefs. Thus, the Bayesian consistent belief vector ¢ is a fixed point rather than a simple
formula. An additional complication is that existing papers have focused on very small ter-
mination chances, where jumps to non-adjacent memory states were suboptimal (so that the
transition matrix was mostly zeros). But Dug can transition to any memory state between
amnesia shocks while he is a Bayesian rational learner. Nonetheless, our model has enough

structure to compute beliefs:

Proposition 2 (Post-Amnesia Beliefs) There exist unique post-amnesia beliefs (q,)N_,
satisfying @D for any memory policy p. Moreover, these post-amnesia beliefs and the asso-
ciated conditional distributions over memory states p® are continuous in memory thresholds

Pn; and for all n, the belief g, lies inside the memory state n interval [pp—1, pn).

Our proof in Appendix [C]is constructive, with a recursive algorithm that pins down unique
beliefs (¢1,q2,...,qn) for any interval policy p. Our recursion solves for all ¢, “from the
outside-in.” The probability mass leaving any block of memory states {1, 2, ..., n} must match
the probability mass entering this block, but we use (6)) to show that the latter probability
has the same likelihood ratio (in state H compared to L) from any memory state k > n. This
permits a formula for beliefs in state n < ng that does not depend on beliefs in higher memory
states. A symmetric algorithm solves from the top down for beliefs in memory states above
ng, and finally ¢,, depends on the average belief in states above and below ng. Continuity
follows trivially from the continuity of every implicit function in our recursion, along with

continuity of the transition chances @

5 Illustrative Special Case with N = 2 Memory States

A. Optimality Conditions and Comparative Statics. When N = 2, Dug chooses a
single threshold belief p; along with beliefs ¢; and g9 in his two memory states. Fundamen-

tally, this example will reduce to solving three equations in these three unknowns. We now

11



see how these equations arise. Since the prior bias favors state § = H, i.e. pll > w, Dug
should start in memory state 2, since this biases the memory toward action H.

Using (11), Dug wishes to maximize S22 (o wl + pEwk), with w? given by (L0).
By , the probabilities p? of memory states n = 1,2 at the final amnesia shock are steady-
state frequencies of a perturbed Markov process, where Dug jumps to memory state ng = 2

with chance n, otherwise transitions according to )\f jt

0 (1- 77)/\5),1

= n+ (1 —nAl,
P+ (- MY, + (1=

N+ (L=mXy+ (1 —n)AS,

and pf = (14)

But by along with @, transition chances in 6 = H (swap { +1 and £ — 1 for § = L)

from Dug’s rational learning between shocks are as follows, with P, = p1/(1 — p1) and
Qn = Qn/(l - Qn):
1 1
1 5(&-1) ~1/P 5(&+1)
Y <Ql> and M, = £ 1 <1) (15)
’ 25 Pl ’ 25 Q2

Notice that Dug’s payoff directly depends on his post-amnesia beliefs Q1 and Q2, as the
transition chances do, thus so does p! from and wf from (I0). So conceivably,
something other than Bayes consistency could be optimal. But our main technical results
in Lemma [I] and Proposition [I] find two necessary conditions for optimality. First, Bayesian
beliefs: Dug’s beliefs are Bayesian consistent (obey (9)) if Qn = ppl /pk for n = 1,2. In
Appendix E we simplify this as follows, where z (the root of function f in ) depends

only on parameters 7 and &:

Q1>52‘1M—Q1_ n f—lxu(éﬂ >

= Pjz, and | = = 2 -z
G =iz <Q2 Q-p 1-n 2 -1 ¢

(16)

Second, Dug must be indifferent between expected post-amnesia payoffs in memory states 1

and 2 at the threshold between them. From Appendix [D] this is:

et e
41 (nQi\ T el x )2
ce1m - (52) T -2 (%)
MzilinQZ e+l - £—1 (17)
§—1m _g(an)T_éi(w)T
% 2e (0

While these conditions are only necessary, we prove in Appendix [D| that they have a
unique solution, and thus are also sufficient to fully characterize the N = 2 optimum. We

also derive the following comparative statics:
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Figure 1: Optimal Two State Memory. The left graph depicts the optimal interval cutoff
p1 as a function of the payoff ratio 7/II < 1 for N =2 and p = 0 = a = § = 1. The right
graph depicts the optimal post-amnesia beliefs ¢; and g2 for p =1, 7/II = 1/2, and £ = 2.

Proposition 3 (Sufficiency and Comparative Statics) When N = 2, the Bayesian con-
sistency and indifference equations are necessary and sufficient to determine the
optimal threshold py. This threshold rises with 7/I1 and with p. As n rises, the associated

optimal beliefs move closer together, with Q1 rising and Qs falling.

The comparative static for w/II is intuitive; as this ratio rises, i.e. matching the high state
becomes relatively less important, the high memory state interval shrinks (p; rises). The u
comparative static may seem counterintuitive, finding that this also happens as the high state
becomes more likely. The countervailing factor is that higher p raises post-amnesia beliefs in
both memory states, which make transitions into memory state 2 more likely. The net impact
is indeed more time in memory state 2, via a threshold that rises, but proportionately less
than p. To see this, consider increasing u, and as a thought experiment, also increase /11
so as to hold constant the overall bias 5 = ull/7. Notice that with § unchanged, both
and remain satisfied if we hold constant Q1/p, Q2/u, and Py /p. This leaves unchanged
the transition chances in @, and thus also the relative frequencies of memory states 1 and
2. But now, reduce 7/II to its actual value; this reduces the threshold, by Proposition
increasing the frequency of memory state 2. In the end, as is intuitive, Dug spends more time
in the high memory state, and post-amnesia beliefs rise but by proportionally less than .

We highlight another way our continuous model differs from the literature. With discrete
learning, there is little gain to asymmetry in both the prior p and the action bias IT/7: Both
simply affect the relative importance of matching states 8§ = H, L, with identical impacts.
But for Dug, the action bias also affects the terms w? from (which affect his payoff ),
while the prior impacts Bayesian consistent beliefs. Thus they have different effects, even
holding fixed the overall bias § towards the high state. In particular, consider doubling y and
halving II. While we show in Appendix [C] that for a given interval policy, only @y, depends

13



directly on p, we just argued that the optimal policy adjusts so that all likelihood ratios rise
proportionately with .

Imagine that Dug is driving, but prone to distraction shocks (looking at his iPhone). In
the Low state, there’s no traffic and no evasive action needed (doing nothing gains 7 > 0
compared to needlessly slamming on the brakes). In the High state, a random decision shock
in the form of stopped traffic will arise, and Dug gains a large amount II > 0 by taking action
to avoid crashing. In the discrete literature, more significant crash damages (large II) and
higher chances of stopped traffic (large p) have symmetric impacts. But for Dug, doubling
while halving IT both doubles his perceived accident risk in both memory states, and doubles
the threshold to switch to his more vigilant memory state. The fraction of time spent in his

“high-caution” memory state 2 remains unchanged, but he’s more cautious in both.

6 Values as a Function of Current Beliefs

A. Conditional Values. We now explore Dug’s continuous time value as a function of
beliefs, given true state 6. Fix an interval policy p, and let )\9 k be the memory state
transitions from @ assuming Bayesian consistent post-amnesia beliefs.

Define the log-likelihood memory state thresholds ¢,, = log(p,/(1 — py)), the cutoff be-
tween optimal terminal actions ¢ = log(p/(1 — p)) = log(w/II), and the log prior likelihood
ratio . Let V?(¢) be the expected payoff given current log-likelihood ratio ¢ conditional on

state 6. Given post-amnesia values v (from ([ ), these conditional values obey:
Vi) = Pt —0) + Z AL (18)

vH(p) = nH(l—FH(E e) Z)\H (19)

where we overuse notation in defining the chance that the next shock hits in memory state

n given current log-likelihood ratio ¢ as
Ny=F0(, —0)—F(t,_1—10)

Lemma 2 Given any interval policy, Dug’s expected payoffs (1/9, Ve) are the unique solutions
to , , and evaluated at the unique post-amnesia beliefs q satisfying @ with
associated transitions \? given by @ These values are C' everywhere, C? on each open

interval (€,_1,0y), and strictly monotone with (v*, V') decreasing and (v, V) increasing.
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PROOF: We prove the case of § = L; the logic for § = H is symmetric. The fact that V% is
C! everywhere and C? on each open interval (£,,_1,£,) follows from and the fact that
F(x) from (f]) is everywhere C! in 2 (even at x = 0), and C? for x # 0.

To see that 1/ strlctly decreases in n, it suffices to show that this property is preserved
by the operator T in . To this end, recall that post-amnesia log likelihood ratios are
ordered 1 < fo < --- < fn. This implies that the conditional distribution over memory
states k at the next amnesia shock, ArLL,k’ from @, is first order increasing in n. In addition,
w? from strictly decreases in n. Thus Twk is strictly decreasing in n for any vector of
post-amnesia values that are non-increasing in n. Thus, the fixed point post-amnesia values
obey:

visvl > o>k (20)

To show that V' is strictly decreasing, we differentiate and rearrange to discover:

VEY(@) = =-nrfH(l—0) - ZfL (pn) =€) (v — vEy,) <0
O

B. Unconditional Values. Define V;,(p) = pV(¢(p)) + (1 — p)V*(¢(p)) as Dug’s uncon-
ditional payoff when his belief p is in memory state n. This obeys the following Hamilton-
Jacobi-Bellman (HJB) equation, where u(p) = max{pll, (1 — p)r} is his terminal payoff at
belief p:
2 2
p"l—p
WP viw) )

0= 0 (u(p) = Va(p) + o (pr + (1= Py = Va(p)) + 27—

The RHS of is the expected drift in the value: The first term reflects the § chance that
the problem ends, replacing value V,,(p) by terminal payoff u(p). The second term reflects
the a chance of a distraction shock, in which case the value reverts to post-amnesia payoff
prvil 4+ (1 — p)vk. And the final term reflects expected drift in his value due to volatility of

the Gaussian learning process. This rearranges to:

2p%(1 — p)?

(@ + )0° V. (p) (22)

Va(p) = nu(p) + (1 — n)va(p) +

The sum of the first two terms is Dug’s expected value if his beliefs never change, assuming
terminal reward v, (p) following a distraction shock, and the final term is the normalized flow

value of the information he extracts from observing the signal process .
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Figure 2: Value Functions. Left: conditional value functions V?(£(p)) given an optimal
memory policy. Right: the optimal unconditional value V*(p), the expected terminal payoff
u(p), and the value with no distractions (red). Here: I=N=2andr=a=§=0=1.

Lemma 3 (Smooth Pasting) For any memory policy, the unconditional value V is C*

everywhere, and C? and strictly convex on each open interval (pn,pn_1).

PROOF: That V is C! everywhere and C? on each (py,pn_1) follows from V¥ and V' each
C' (Lemma . We prove strict convexity in Appendix 0.

C. Smooth and Super Smooth Pasting. Rephrasing Lemma 3] for any interval policy,
the unconditional value function obeys value matching and smooth pasting across all barri-
ers. In other words, unlike in standard stochastic control models with a linear state space,
e.g., [Dixit| (2013), smooth pasting is not an optimality conditionB It simply follows from
the fact that cdf F in is continuous and differentiable, even at zero, and thus, so are
transition chances between amnesia shocks. Intuitively, the difference from standard control
models is that Dug doesn’t immediately take an action as he crosses the boundary. He must
wait for nature to offer him another shock, and so switching memory states doesn’t introduce
any discontinuities into Dug’s eventual action choice.

This begs the question of what is the optimality condition. By Lemma[3] the unconditional
value function V,, is C? on open intervals (p,_1,pn). Super Smooth Pasting (SSP) imposes

continuity of the second derivative at the boundary between memory states:

SSP: V. (pn) = Véﬁrl(pn) (23)

By SSP is equivalent to continuity of the value of information at p,.

12Potentially, the value function could violate these conditions with a non-interval policy, or an interval
policy where the vector of thresholds varies with where amnesia last struck. As noted below Proposition
we considered the latter generalization in Appendix |E| and proved that it does not help

16



It turns out that SSP is equivalent to Dug’s indifference between being hit with a distrac-

tion shock just to the left or right of the boundary between memory regions.

Lemma 4 (Super Smooth Pasting) SSP obtains at threshold py if and only if indiffer-
ence condition obtains.

PROOF: Substitute equation into Vy,(pn) = Vat1(pn) (by continuity) to get:

2]931(1 B pn)2
a+9

2pi(1 — pn)2 "

(1 = n)vn(pn) + Vo (pn) = (1= n)vng1(pn) + ats t1(Pn)

and thus, Dug is indifferent across memory states n and n + 1 at threshold n + 1, if and only

if his instantaneous value of information is continuous at p,,. More generally:

Vn(Pn) z Unt+1(Pn) & Vé’(pn)E él—i-l(pn) O

Proposition [1] established that optimality implies Dug’s indifference at the thresholds p,.

Thus, SSP is a necessary optimality condition expressed in terms of the unconditional valueE

D. Distraction and Decision Capital Gains and Losses. Let V,*(p) be the optimized
unconditional value at belief p in memory state n, namely V,,(p) given an optimal memory
policy. WE now explore how this value is affected by the shocks Dug experiences. Distraction
shocks are a capital loss, erasing knowledge that Dug has accumulated. But more surprisingly,

decision shocks can actually be a capital gain when Dug is at his most confident:

Proposition 4 Distraction shocks are always a capital loss: for all memory states n and
beliefs p, Vi (p) > pv + (1 — p)vk. But decision shocks are not: There exist p < py and

n

P > pn-1 such that V*(p) > u(p) for p € (p,p), and (b) u(p) > V*(p) for p & [p,p].

The proof is in Appendix [E] For beliefs sufficiently close to 0 and 1, Dug would strictly
benefit if he could stop learning and take immediate action: His myopic payoff u(p) exceeds
his value from continuing. He rationally forecasts that his future distraction shocks will harm
him, and potentially pull him far from his current strong beliefE Figure illustrates many of

our results for value functions: namely, the monotonicity of conditional values V¢ (Lemma|2)),

13This is in contrast toDumas| (1991)), where smooth pasting and super smooth pasting were joint optimality
conditions for the barrier in a regime shift model. Notice that while F° from is C'', making value matching
and smooth pasting automatic, its derivative is not, with a kink at zero.

“This did not happen in [Wilson| (2014). Indeed, an early version of that paper considered allowing the
decision-maker to choose when to stop, but it had little effect: She was indifferent about quitting in the
extremal memory states, but never strictly gained from it.
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the convexity of the optimal unconditional value V* (by Lemmas [3| - 4| and Proposition ,
and the relationship between the optimal unconditional value and the expected stopping
payoff u(p) described in Proposition The right panel illustrates (for N = 2) that for
confident beliefs, Dug’s myopic payoff (green) exceeds his optimized value with distractions
(blue), while the gap between his value (blue) and his value with no distractions (red) depicts

his value lost due to distractions.

7 Value Comparative Statics

As seen in Proposition [4] Distraction shocks always induce a capital loss, but decision shocks
can be bad or good news at the moment they occur. The next result asserts that Dug’s ex

ante expected payoff falls as decision shocks become more common.
Proposition 5 Dug’s optimal initial value V* is strictly decreasing in § and o.

The proof is in Appendix [F] Intuitively, increases in ¢ make the observation process more
noisy, while increasing J reduces the expected time that Dug has to acquire information
before taking an action.

We now derive the limit behavior of the optimal initial value, emphasizing the dependence
on N by writing V*(N). We first explicitly solve for V*(1): With just one memory state, its
post-amnesia belief must be ¢ = p, and so, by and ,

146 et e-1
w1\ _ o H L _ - N m@4E (T T (TN
V(1) = vy’ +op = pdl (1 % (HH> )‘1‘25 <MH> = MH+£ <NH>

Now, define the value with unbounded memory, V*(co) = limy 0o V*(N) and the full infor-

mation value VE! = Il + w. We then have the following limits.

Proposition 6 (Limit Values) The value with unbounded memory is

-1

<7r> ’ where ( = /1 + 2002

oltlg%)V(N)—V(oo)—uH%— T

¢

The full information value emerges as o — 0, or as § — 0 provided N > 2. We also have:

lim V*(N) = lim V*(N) = lim V*(N) = pll

a—o0 d—00 oT—00

The first of these results highlights that with no amnesia shocks, Dug is a standard

rational Bayesian, and thus earns the payoff he would obtain with infinite memory. The
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Figure 3: Changes in the Initial Value. Each graph illustrates how the optimal initial
value V* varies in o (left) and 0 (right). In all graphs the y-axis origin is II, 7/II = 1/2, and
all remaining parameters are set to 1, e.g., in the left graph a = § = 1.

formula simply evaluates V*(1) at & = 0 (where £ becomes (), since with no amnesia shocks,
it doesn’t matter how many memory states Dug has. The second highlights that two memory
states are sufficient to achieve the full information value as § — 0. Intuitively, when decision
shocks are vanishingly rare, he knows that he will observe the signal process for a near infinite
length of time before making a decision. Thus, he can be nearly certain that # = L in memory
state 1 and that § = H in memory state 2, and both states are nearly absorbing. But two
memory states are also necessary to achieve the full information value, since evaluating V*(1)

at 6 = 0 gives a lower payoff:

k=1

FE
%in%v*(l) = pll + u <7T> < VI for kK = /1 + 2a0?
- K

wll

Figure [3] illustrates Propositions [5] and [6]

8 The Demand for Memory and Information

A. The Demand for Memory. Assume that at time 0 Dug can choose the number of
memory slots N at increasing additive cost C'(N) with C(1) = 0 and limy_,oc C(N) > 7. To
emphasize the dependence on N and the rate of amnesia shocks «, write the optimal initial
value as V*(N, a), so that Dug’s optimal memory correspondence obeys:

N*(a) = arg max V*(N,a) — C(N)] (24)

This problem must have a finite solution. Indeed, Dug’s value is bounded below by ull, since
he can always secure this value by selecting action A whenever the decision shock hits, and
his value is bounded above by the full information value 7+ pll. Consequently, the gain from
buying infinite memory is bounded above by 7, which is strictly below limy_,o C(N).

By standard comparative statics reasoning (Milgrom and Shannon| (1994))) the demand
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The Marginal Benefit of Memory Complementarity in (g, a)
MB(«)
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Figure 4: Precision and Memory. The left panel graphs the marginal benefit of memory
as a function of the rate of amnesia shocks for § = ¢ = 1. The rate of amnesia shocks «
(z-axis) and precision of the signal ¢ (y-axis) are complements on the shaded region and
substitutes elsewhere (left graph) for N =2 and § = 1.

for memory N*(«) will be non-decreasing (non-increasing) for any cost function when the
marginal benefit of an additional memory slot MB(N,«a) = V*(N + 1,a) — V*(N, ) is in-
creasing (decreasing) in «. Furthermore, monotonicity of the marginal benefit is necessary
for memory demand to be monotone in « for all cost functions. Unfortunately, Propositions

and [0] together imply that the MB cannot be monotonic in « at any N.

Corollary 2 The marginal benefit of memory is strictly positive for all 0 < a < oo with

limits limg—y0 MB(N, ) = limy—y00 MB(N, ) = limy_,0o MB(N,a) = 0.

In other words, the MB of memory is initially rising in «, and vanishes in N and «a.

The simplest case consistent with the limits in Corollary [2] is that the marginal benefit
of memory is decreasing in N and hump-shaped in «. Under these assumptions, the optimal
number of memory slots N*(«) is hump-shaped in « for any convex cost function C'(N).
While we have not been able to establish these properties analytically, they do hold in every
computed example. Figure [4| (left) plots the MB of memory for four values of N.

B. The Demand for Information. Parameterize information by the precision of the signal
process, ¢ = o~ '. To emphasize the dependence on ¢ and the rate of amnesia shocks o, write
the optimal initial value as V*(¢, ). Assume that Dug chooses precision at increasing cost

C(s) with C(0) = 0 and lim¢_,~, C(s) > 7. The optimal precision correspondence is thus:
(@) = argmax [V*(, a) — C(<)] (25)
<>

This problem must have a finite solution, by identical reasoning to that following .

As above, the demand for precision ¢*(«) will be non-decreasing (non-increasing) for any
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cost function when the difference V*(¢,a”) — V*(s, @) is increasing (decreasing) in ¢ for all

o > . Proposition [6] yields the following limits for such differences.

Corollary 3 The change in value from a change in the amnesia shock rate obeys

lim [V*(s,a”) = V*(s,a/)] = lim [V*(s,a”) = V*(s,a/)] =0

s—0 §—00
Thus, the difference V*(s,a”) — V*(¢,a’) cannot be strictly monotone in ¢. Equivalently,
V* cannot be globally supermodular or globally submodular. The simplest intuitive possi-
bility consistent with these limits is that V* is submodular for low levels of precision and
supermodular for high levels of precision. This is true in all of our computed examples.
In particular, for N = 2 and 6 = 1 we computed V* on a fine grid of parameter values

(50,61, ---SK) X (o, a1, ...aic) and then computed the cross partial differences:
VE(Sit1s @i1) BV (Sig1, aigr) + V(60 i) =V (Gis1, 05) — V(i i)

Figure [4] illustrates the regions on which these cross partial differences are positive (shaded)
and negative (white) in (o, 0 = ¢~1) space. Notice that for any fixed «, there is a threshold
value of precision, such that the cross partial differences are positive above this precision (low
values of o) and negative below this level of precisionE Thus, for these parameter values,
Dug chooses more precision (i.e. better information) as amnesia shocks become more common
when precision is already high (aka when precision is cheap), but chooses worse information

when amnesia shocks become more common when precision is already low.

9 Conclusion

Our model is the first to formally investigate how distractions impact rational Bayesian
learning, and how they might optimally be mitigated. While this setup introduces some
technical complications, e.g., the fact that post-distraction beliefs directly impact the payoff,
it is tractable for all parameters, and delivers comparative statics not found in the discrete
literature. One novel finding is that at very confident beliefs, the anticipated impact of future
distractions is so significant that Dug would actually prefer to stop learning. This does not
happen in typical learning models, but suggests an interesting possibility for future research.

We note that post-amnesia beliefs between distraction shocks are not a martingale.

Clearly, they must drift up from memory state 1 and down from memory state N. But

15The same super(sub)modularity pattern obtains for all values of § we have numerically tested.
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this is the only definitive pattern we found, and in particular it is not the case that there is a
cutoff memory state such that Dug expects his beliefs to drift up below the cutoff, and down
above the cutoff. For some intuition, note that raising n (and hence ¢, ) means fewer memory
states k > n that entail a positive drift ¢; — ¢, (and more states k < n with negative drift),
while also decreasing the magnitude of each drift term. This effect — it’s harder to drift up
when beliefs are already high — reduces expected drift as n rises. The competing effect is
that increasing n also makes transitions to higher memory states more likely, which increases
expected drift.

While our formal motivation is that of an individual decision maker learning in the face
of distractions, the same model could describe a sequence of decision makers with random
transition times between them. For example, each DM in the sequence could be a worker
within a firm in a given position (e.g., a lead researcher on an R&D project) with “distraction”
shocks separating the worker from the firm. Or our model could capture a sequence of doctors
seeking to diagnose a patient, where poor communication — both in the form of inadequate

notes and excessive notes — have often been blamed for poor patient outcomesm

15For example, see Steiner, Stewart, and Matejkal (2019)).
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A Derivation of Belief Evolution and
Step 1 Deriving the Ito Process for Conditional Beliefs

Lemma 1 in /Anderson and Smith| (2013) derives the following Ito diffusion for an uninformed

player’s beliefs (here, Dug) when observing a signal process with state contingent drift:

(26)

& 407 2p(1 — p)’dt + 20~ 'p(1 — p)dW if0=H
p =
—4072p*(1 = p)dt + 20 'p(1 —p)dW if 6 =1L

Applying Ito’s Lemma to with £(p) = log(p/(1 — p)), and simplifying using ¢'(p) =
[p(1 —p)]~t and ¢’(p) = (2p — 1)[p*(1 — p)*] 7!, completes the derivation of ().

Step 2 The derivation of the conditional distribution at the next shock .

In state 6, the CDF ®%(z,t) = Pr(¢ — £y < x|0) is given by

1 — 2t 2/t
(1) = oh erf<:21\/u,1> with pq = Tzf’ and oy = ;[
o M) = s 4 L G and ®F(x,1)=1— 0" (—z,t) (27)
xr == - — =1 - _
o2 2\ 2 Ve ’ v

In state H, denote ¢ (z,t) = 00 /0z and ¢ (z,t) = 0B /Ot. These are given by:

2 2
oMot) = 7 e (-; <m _ jﬁ) ) and (1) = (w ; jﬁ) o8 (2, 1)

The chance that the next distraction hits at time ¢, given no intervening decision shock, is:

ae~ ot ftoo de 9%ds

Pr(amnesia at t|amnesia before decision) = = (a4 0)e~ (@)t (28)

a+0
And thus, the chance that ¢/ — £y changes by at most x at the next amnesia shock is as follows:

Fl(z) = /0 (o + )~ CTNSH (1 1)t

o

= — lim & (z.t)e (@)t 4 %L%@H(x,t)e*(a”)w / e~ FYH (1 1)t

t—o00 0

2t 2\
= 041,50 — \/7/ —(a+d)t 2<a:+ exp( & x—02> >dt
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(the second line integrated by parts with u = ® (z,t), dv = (o 4 §)e~ (T du = (1),
v = —e~(@+)!) Evaluate this integral and simplify with ¢ = /1 + 2(a + )02 to recover ().

B Proof of Lemma [I] and Proposition

Begin with a generalized policy, where the vector of thresholds p; can depend on the memory
state ¢ where amnesia last struck. We work with likelihood ratios @; = ¢;/(1 — ¢;) and

P;j =pi;/(1 —pij). Recall by that Dug wishes to maximize V = V¥ + VI, with

N
T T
vezz;m%&wﬁzn<1—FHO%DQ)>,wf:wFLOgHQ) (29)

The proof proceeds in 6 steps. Step 1 calculates the payoff impact of a change in Q; via the wf
terms. Step 2 calculates the payoff derivative in transition chances. Steps 3 and 4 derive the
indifference FOC’s for optimal thresholds (vs transition chances), allowing arbitrary beliefs;
Step 3 simplifies the problem using cumulative transition chances, and Step 4 proves that
optimally, pj is the same Vi. Step 5 shows that given the FOC’s, Bayesian beliefs are optimal,
proving Lemma [I| Step 6 simplifies the FOC’s with Bayesian beliefs, proving Proposition

Step 1 The part of 0V /0Q; resulting from changes in w? has the same sign as up! /pF —Q;.

The partial derivative of in @Q;, considering only the w? terms, is ,upf{ 8le /0Q; +
pFowF /0Q;. But by along with , if 7 > I1Q); then this is

-1 E+1
0 g&+1 (1Q;\ 2 LT E—1 (TIQ;\ 2
“a@[’“’wg(w) *”in(“zg(J >]

-1
Y161 (TQ:\ T
= H§2€ ngi < f) o’ = Qi

As desired. A symmetric argument applies if instead m < I1Q);. O

Step 2 Given constraint )‘?,i =1- E#i N . the following holds Vj # i € {1,2,...,N}:

Z,J’

ov? 1—

7 i
ON;

Fix an interval policy, and let T (-) be the induced probability distribution over histories,

with Y (z1]22) be the chance of history z; conditional on z3 having occurred. Also recall that

'"This step adapts the proof of Proposition 1 in|Wilson| (2014)) (based on [Piccione and Rubinstein| (1997)).
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Ae- =(1- 77))\(?. is the total transition chance i — j between amnesia shocks (given 6),
with /\9 the chance conditional on no decision shock. For any two memory states ¢ and 7,
observe that Y(z|6) can be decomposed as a term that does not depend on Ai,j multiplied
by (Af’j)#(z), where #(z) denotes the number of occurrences of a transition i — j between
amnesia shocks along the history z. Using this for the first equality below, and letting
H(i — j|z) be the set of all subhistories of z that end with an amnesia shock in memory

state i followed by a transition to j by the next amnesia shock, we have

9 T(z10) _ T(=]6)
Y(2|0) = #(2)— 57—~ = > (30)
8A?,J' AG,J 2 €M (i—jz) 19]

Next, let X (i) denote the set of all histories ending with an amnesia shock in state ¢, and
for any history z, let Y(z|(2',7),0) denote the probability of z conditional on 2’ followed by

a transition (by the next amnesia shock) to state j, given #. Then we have:

> TS e = Y YEDTEE )0

ZeH(i—jlz)  bI 2 €H (i—j|z) 2'eX (i)

(This holds since the RHS summand vanishes whenever (2, j) is not a subhistory of z; and if
it is—so 2’ (ending with an amnesia shock in 4) followed by a transition i — j is a subhistory
of z, and thus also 2’ € H(i — j|z)—then in both the middle and RHS expressions, the
corresponding term in the summand is equal to Y(z|6)/ Af’j). Plugging this into (30)),

0 .
g L0 = Y TENOT(I( ), 6)
A7 |

% 2'eX(1)

Using this for the final equality in the first line below, we then obtain:

86
8;’%; QZZWT!“W'—”ZZ Zrye 2.3),0)| w’,

,J J'=1zeX(j J'=1zeX(j’) |2/€eX(i
1 . 1
= PR EA) Z > Yzl 4),0) wh E;pff
2 e€X(i) J'=1zeX(j")

(for the final simplification, the bracketed term is the payoff after a history 2’ followed by a
transition to j; by stationarity this is VJQ Vz'). Multiply by 1 — n for the derivative in )\z 1
and subtract the derivative in )\f’i to incorporate constraint /\iﬂ- =1-> 4 )\f’ i 0
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Step 3 Reformulating the Problem: The Indifference Conditions

We reformulate the problem using cumulative transition chances. For any i > j, denote by
aﬁj the transition chance (between shocks) from i to k£ < j; and for any i < j, b@ is the
chance of moving from ¢ to k£ > j. For our generalized policy, with cutoffs (Pz s i after a

distraction in memory state ¢, becomes )\f’j = F? (log %) FY (log ~Li=l)  Write as:

0 _ 49 if 1 <14
/\fj _ ) Gy T G- M s , where a?, = 0,0/ y = 0 and (31)
’ b, =0l it > 7 ’
Lig-1) $(6+1)
€+1 (Py\2¢Y L £-1(Qi\? e
L _&1 < 2
al; = % Qz (i > j) and b;; 2 \P, (i <J) (32)

with ai . and bH defined by interchanging £ — 1 and £ + 1 in . Observe that

2d = »J b = 2% and similarly —2 = ZbJ (33)
L - - V! .
g o (E) o(%) @ b @

By (31} . ) choosing the )\ ;'s optimally is equivalent to choosing all a ; and bz ; optimally.

ol : L
a;’j, with alj as a functlon of a;; via

. By (1), ¢ a; ; appears in both )\ = a” — afj ; and )\”H = afjﬂ 9 ; but no other
f’J vt L vk

is
L H T
da Ba’ i

Now, compute the derlvatlve of payoff pV# + VI in

L

transition chances. So the total derlvatlve of uWH +VF in a! i

namely p

dafl (avH N gyH aA”H) (avL ONE. ape 8)\”+1>

=T H o H H H L 5L L L
dajy \ONi; Oaiy 0Ny Oag; 0N Oaiy 0Ny Oaj;
dal’, [ oyH oy oVL ovL

17-]
= pu (1) + (1) | + (1) + (-1)
da{?j (m{fj mflyﬂ miL,j 8)‘£J’+1

() G = oty = 1 = 1)) = O = v s = )

- {P y ’%5 T S (34)

Similarly, we have from (31]) that b(-’ - appears in both )\(? = bfj 1—b9 and )‘fﬁl = b9 bf]_H

but no other transition chances. So the payoff derlvatlve in bX . viewing b cas a functlon of

4,5
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bﬁj via , is:

db¥, <avH ML gpH 0N +1> <avL ONE; VL oL, +1>

M H AnH H 17 L AnL L I
dbf, \ ONT ovlT "~ NI | ol ONE; ObE, T ONE . OB,
bl [ gpH oVH VL oVt

= 2 | e (=1 1 — (-1 +1
M aE, <6A{fj( )+ aAfng( )]+ aAiLJ( )+ O, 1( )

Using the Step 2 formula for Y/ 8)\9 and the second expression in , this is ” times

u%j(pﬂuff U)W ) 4 (<R — By pE e — o))
[P,J ”L”fQZuH V)~ (wh— fm] (35)

Step 4 The Optimal Interval Policy Thresholds

Lemma B.1 Given any beliefs (Q; )J 1, the optimal P; ; leaves Dug indifferent between post-
amnesia values in states j and j + 1 at “belief” (likelihood ratio) P, ;(up/QipF). If
below is positive (negative), Dug’s payoff is falling (rising) in P;,j.

PROOF: First consider B j with 4 > j. By ., P; ; appears in a but no other cumulative

L

transition chances, and (| gives the total payoff derivative in ai'is with am- viewed as a

1
(S
function of a . Thus, differentiating a = 5;21 ( é:) ’ (from (32)) in P; j and combining

with (34), the payoff derivative 9)/ 8Pi,j is:

£-1
oV Dty Lomfp mol oy r )] EEESL (PN
dal, OP; AR P T i S BT T @

£+1
And for 1 < j, where (by . 5,j appears in b = 5%1 (%) > but no other cumulative

transition chances, differentiate biLJ- and combine w1th to obtain 0V/0P, ;:

§+1
vk 0P Y LQZ G s 26 2P; \ Py

Together, these two expressions imply that for all ¢ and j, 0V/P; ; has the opposite sign to:

L L
- yH  Hy (Ll 36
»J PZLQz J+1 J ( J ]-‘rl) ( )
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This proves the final assertion in Lemma and establishes that must vanish
for interior optimal cutoffs P; ;. We now prove that it optimally vanishes also in corner
solutions. Specifically, we rule out “lower corner solutions” where 0V/0P;; < 0 but P ; is
set to its minimum possible value, namely F;;j_1. (A symmetric argument rules out upper
corner solutions, where 9V/0F; ; > 0 with P; ; set to its maximum). Toward a contradiction,
assume an optimal memory where for some ¢ and j, P; j = P; j—1 and 9V/0F; ; < 0 (so (36)) is
positive). Given i, let j* be the smallest such j. We know j* > 2, since cannot be strictly
positive at P;1 = P; o = 0. So by construction, P; j«_1 is interior, thus (by optimality) Dug
is indifferent between expected post-amnesia payoffs in 7* — 1 and j* at “belief” P@j*,l%.
But by construction ( is positive for j* and P; j« = P, j«_1), he strictly prefers j* + 1
to j* at this belief, and thus also to j* — 1. But this contradicts optimality: F; j« = P; j«_1
implies that Dug never transitions ¢ — j* between distractions, so P; ;+_1 is the effective
threshold between j* — 1 and j* 4+ 1, and since it is interior by construction, optimality

requires indifference. This proves the first assertion in Lemma O
Step 5 Bayesian Beliefs are Optimal. (Proof of Lemma

We now consider the optimal post-amnesia beliefs Q);. Firstly they impact the payoff via the
az ; and bf»" ; terms, but by Step 4, optimal cutoffs ensure that this effect vanishes. So given
optimal cutoffs and Step 1, the payoff derivative in @; has the same sign as upf{ / piL — @,
which is positive at a below-Bayesian belief (Dug should raise @;) and negative at an above-

Bayesian belief (Dug should lower @;). Thus Bayesian beliefs are optimal. O
Step 6 Indifference as a FOC (Proof of Proposition .

Substituting Q; = upl! /p¥ from Step [5| into equation , every P; ; solves the same indif-
ference condition, namely vanishes. Setting P;; = P; and applying Bayes consistency,
this rearranges to , completing the proof. ]

B.1 Proof of Corollary

Toward a contradiction, assume an optimal corner solution (P; = P;y;) for some ). Then
Dug never uses memory state ¢, so consider instead adding a new memory state “0”, with
threshold Py < P; and Bayesian beliefs (Qg; by Step 1 of Definition [I| below, this implies
Qo/Po = z, where z € (0,1) is the root of (38). We show that for any P sufficiently small

(where Py = 0 means the state is unused), Dug gains by raising Py. To this end, consider the
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11Qo

s+l £+1
—1 en —1 P, 2 P\ 2
A5 — 525 2% > 0and A} = 525 5 <<P~01> - <P0> ) —~0 Vj>2
= J

Thus becomes

limit Py — 0, where Q9 = Pyx — 0. By , wé Eﬂ'FL< x ) — 7. And by ,

ob =+ (1= ) ek 4 (1) <1 - 1:55(5“)) v

2€ 2¢
. §-1 Ly, L 1L L
= dim (1 =) 2 2’ (vg' —v1) = n(m —vy)
Since optimally vf < 7 (Z/OL = vf = m means Dug ultimately chooses £ with probability

1, learning nothing), this implies that 1/({“ — vf remains boundedly positive, and so Py (v —

vt — (vt — vF) remains boundedly negative as Py — 0. That is, Dug strictly prefers memory
state 0 to 1 at threshold Fy, and so by Proposition should raise F. [l

C Post-Amnesia Beliefs: Proof of Proposition

We present a recursive algorithm which yields unique post-amnesia beliefs q = (q1, g2, ..., qn)
for any interval policy p = (p1,...,pn—1) and prove that it satisfies (9)) iff it obeys our
recursion. We use @, = ¢,/(1 — ¢gp) and P,, = p,/(1 — py,); and so, by (@ and :

&1 &1
41 Q; 2 (@i ? o .
()T (8)7) e

i = e 1
621((3) T - (%) "’) if i > j

. . 2] _ 9

And )\fj just swaps £ —1 and § + 1, while A7, =1 — Z#i A
Fis an interval policy. Let ng denote the initial state; namely the index of the memory
state with u € [Ppy—1, Pp,]. Define v, = P,,/Pyy1 < 1 for n < N — 1 with 79 = 0 and

yN—1 = 1, and the functions f : R — R,g:R? — R, and 3 : R — R as follows:

(37)

f(R) = 17777<R—§I>+€i11%531 (38)
=2 (B0 - R + ()T (B0) - Ehy) - R (1- E36()

g(Ry) = = (G2 1) (5 1) (39)

o) = (557) (1-+%)/ (1-2) (10)



Definition 1 The Outside-In Recursion constructs (Qn)N_, recursively as follows:

If ng # 1, then Q1 solves f(Q1/P1) =0. If ng # N, Qn solves f(Pn—1/Qn) = 0.

1.
2. Given Qy and ¢ = pé/plL fork<n-—1, Q, and ¢, Yn < ng solve
1(%) T Z (%) - oef (%)
n - k<n—1 and qb . k<n—1 (41)
g(%’y 1>_ AR t F($)
Pn’ n— Z ¢k <P7n> n
k<n—1

Given Qi and @) = pkH/p% fork>n+1, Q, and ®, Yn > ng solve

3.
(o) o E (%) - > e (5
Qn k>n+1 kE>n+1
= : and &, = (42)
g(Pnfl 'Ynfl) & Pn_1 5(§+1) f(Pé_l)
Qn Z k( Qk ) "
k>n+1

4. In the initial state, @)y, is the root of the following equation, where the coefficients

(X;)E, (given by ) depend on n, &, and the average beliefs énofl in states k < ng—1
and Q 1 in states k > ng + 1, given 6 = L:

(Qn0+1 - M) Qno %(€+1) (Qn0+1 - M) Pno—l %(5_1)
e | Pno - Qno—l Qno
n §—1 p—Qn
+ — (X2X3 — X1X4) (43)
1—-n 2 7 Qno—l
where o o
Llie_
x= (B - 8" =gt
_ . . (44)
_ &+1 Qg — _ 5(6+1) +1 Qg
Xs=¢1—po Xa=no 1 <1 - Pl-(f)_f)

5. Appendia: also solves for p¥, pﬁo, and p% in terms of coefficients X5 and Xg in ,

then remaining PZ values follow using ¢, and Py (Steps 2 and 3) and Bayes consistency:

1 Xsp), Xephy

L L N0 L n0
= = —0 = —"0— where 45

jsno—1 Jj>io+1 ’
3(6+1) 3(6-1) 3(&+1) 3(6-1)
X, (%)2 + X (@)2 X; (%)2 + X, (Pn(rl)Q
5 = 7 ) A6 — n &—1
- Ty (XoX3 — X1Xy)

L5 (XX — X1 Xy)
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C.1 Post-Amnesia Beliefs Obey the Recursion for n # n

Lemma C.1 Any fized point (Qn)nN:1 of @ satisfies the Outside-In Recursion ¥Yn # ny.

PROOF: We prove the n < mng case. Symmetric steps establish the n > ng case. The
expression f(Q1/P1) = 0 in Part 1 is precisely the second expression in at n = 1, so
we prove that this expression holds V1 < n < ng, and that the first expression in holds
V2 < n < ng. Throughout, we exploit the fact that by @D, p? is the steady-state distribution
of a Markov process that jumps to ng with chance n and otherwise transitions according to

)\?J, and so probability masses entering and leaving any block of states must balance.
Step 1 (Q,)Y_; is a fized point of @ iff it obeys the second equation in V1l <n <ng.
Using the fact that the mass leaving states {1,2,...,n} equals the mass entering these states

and taking ratios (H to L):

H H
Zkﬁn P (77 +(1 =) ijn-i-l Ak,j) - Zj2n+1 P]H Zkgn(l - U)Afk
= L L
Shentk (14 Q=) i My)  Ziznir £ Ll = AT,

(46)

We have from and Bayes consistency (Q,, = upl /pL) that for any j > n + 1,

el
H -1 (P 2
iZkSn)‘ng:@ 2€ <Qj) _E-1h
Py Yk N M £+1(Pn)521 +lmp
26 \Qj

So the RHS of (46| equals ¢ ﬁ 1'; n . Also simplifying the LHS using upkH = p,%Qk, then dividing

LHS numerator and denominator by p¥, and LHS and RHS by P,/p, becomes

Zkgn—l qbk?:: (% + ZjZn—l—l )\kH’]> + ¢n% (% + Zj>n+1 AWHJ) . f —1

S+ (47)
Ekgnfl Pr (1%77 + ijnJrl Aé,j) + ¢n ( + Zj>n+1 n]) ¢
£—1
By . ) for k£ < n we have anﬂ )\H = 5;—51 (%’:) ?  and just swap £ — 1 with £ + 1 in

state L. Plugging this into and solving for ¢, yields the second expression in (41). [O.

Step 2 (Qn) _, s a fized point of @D iff it obeys the first equation in V2 <n < ng.

Using the fact that probability mass leaving state n equals probability mass entering state

n, grouping the expression to have all pz terms with & < n on the LHS, and taking ratios (H
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to L) yields:

W (L= =) = Zpena A=, Y pf (L=,

pfi (1 — (1 — n))\ﬁm) — Zkgnfl pﬁ(l - n))‘ﬁ,n ZjZn—H pJL(l a n))‘ﬁn

The RHS equals P, - B(v,—1)/p (with 3 defined in ([40)), since by for Vj >n+1,

£+1

£+1

1 (m)2_<m1>2> et

ix\fn .2§<Qj Qj _Pg—ll—fyil
—1

L L J —1 1N T n
T e ()T -5 ) T
J J

Using this and simplifying the LHS using first pp;” = p; Q], then dividing numerator and
denominator by (1 —n)p¥, then dividing LHS and RHS by P,/u, we obtain:

¢n Yn (% 75{71) - Zkgn—l ¢k%:)‘an

)

_ g = > k<n— 1¢k(>\knﬁn1 ?3 n)
TR o we e A RS A ENES Y (R

7n>
£+1

Using transition chances from (37]), simplify using asdp = >, Ok (Q" ) ? / g(%;L  Yn—1)-
k<n-—1

Equate the RHS of this expression with the RHS of the second expression in (41)) (verified in
Step 1), and solve for @, /P, to obtain the first expression in({41)). O
C.2 Existence, Uniqueness, and Bounds for n # ng

We now prove (for n # ng) that there is a unique solution @, to our Recursion, with
Qn € [Py—1, P,). First, we establish key properties of functions 3, f, and g from ,,:

Lemma C.2 If v < 1, then B(y) > %,B(v) > /7, and B(y) < 1. Thus, f as defined
m 18 strictly increasing in R, and g defined in is strictly decreasing in R.

PRrROOF: The second sentence follows by immediate inspection of and if the three
inequalities for § in the first sentence hold. The first 5 inequality follows directly from the
definition of 8 and v < 1. For the second, let x = /7, so that

B _B_g-11-at (48)
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We first claim that the expression in decreases in z. Indeed, its derivative is negative iff:

1 — &t

—(€+ 1)at (1 - §$§_1) <0eaX el —a?) - 1<0 (49)

x — z¢

To show that the final expression in is negative Vx < 1, it suffices to show that it’s
increasing in x, since it vanishes at = 1. Differentiating, its derivative has the same sign
as &€ — 1 — (€ + 1)z? + 22511, this is positive, as desired, since it is itself decreasing in = < 1
by an immediate calculation, thus at least its zero value at x = 1. So holds, thus 8/x
decreases in x and so is at least its value in the limit as * — 1, which by ’hopital’s rule is 1.

Thus #/,/y > 1. Finally for § < 1: multiplying by z and differentiating in = yields

gt
A d1-aftt =€+ Dat+ (€ - Dat (§+1)x§_2(ﬁ_w2)
dr  drl—z8—1 1—$§1 1 — -l

This is positive by the second claim, 8 > z, given that 2 < 1 (so x > x?). Thus 3 is increasing

in xz, and thus is at most its limit as * — 1, which by I’hopital’s rule is 1. ]
Lemma C.3 Vn # ny, the Outside-In Recursion has a unique solution, with Q, € [Pp—1, Pp].
PROOF: We prove the n < ng case by induction. Symmetric logic applies to n > ng.

Step 1 Proof of Lemma for n =1

By Definition 1 Part 1, Q1/P; is the root z of f: By Lemma f is increasing in R, and
by immediate inspection of , f is negative at R = 0 and positive at R = 1. Thus it has
a unique root x between 0 and 1, and so 0 < Q1/P; < 1. .

Now assume the Lemma is true for k¥ < n. We prove it for k£ = n via the following steps.
Step 2 ¢g(1,7) <0 and g(z,v) >0 for any v <1
For the first claim, using , the numerator of g(R, ) evaluated at R =1 is
2 1 —1
e 00T (- 5) - (- 5)
< ’y%(f Q) <1 — §H7> — <1 — g;i) by 8 <1 (Lemma

Collecting terms, this is precisely —(1 — 7%(5_1)) -(1—7), at most 0 by 5 < 1. For the second
claim, clearly the denominator of g(R,~) in is positive, so consider the numerator. By
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inspection it is decreasing in §, so by Lemma it is at least its value at § lower bound

=
§+1’ which simplifies to —f(z) + (%) ’ £+1 L(1 —~). This is positive by f(z) = 0. 0.

£41 £+1
Step 3 The RHS of the first expression in exceeds §+1 (1 — 'Yni1> ('Ynlfl) 2

Rewrite its numerator as:

Y (%) 5 () 0

k<n—1 k<n—1

But by , for any x and ~ we have

i 2 e £41
f@) = for) = et gogr® (1-97)
) > —f@)+ et (1-4F) (51)

Using at v = y,—1 and z = Qx/P,—1 to replace the square bracketed term in , we
obtain the following lower bound on the RHS of :

) §+1
—Z¢kf< ) §+1 1—72) Z¢k<
But the first term vanishes using the second expression in for ¢,_1, so this is precisely

k<n—1 k<n—1
?21 <1 — 7n21> (771171) times the RHS denominator of the first expression in (41f).  [O.

Step 4 At %T: = Yn_1, the LHS of the first equation is smaller than the Step 8 expres-

ston.
Evaluating and at R, = vn—1, this LHS expression f(vn—-1)/9(Yn-1, Yn—1) i8

et e\ . e
V-1 (1 - %31) (Ba-1 = ¥n-1) <1n (%—1 §+1) + 2 1)

&1 -
W (/Bn 1= 'Yn—l) (Bn 1= 54_1'771 1) - 'Vnil <1 - g_ﬁﬁn—l)

(52)

Collecting terms, the denominator of (52| rearranges to

(1_77?"32&_’_1) (anl - 'Ynfl) — (1 — ’ngll) (6721—1 — 'Ynfl)
<(1_7’2)§£_|_1) - (1 Tn= 1)) (Bn 1 ’Yn—l) by Bn—l <1
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This is positive by Lemma Using this to replace the denominator in , then dividing
numerator and denominator by 32_; — 7,_1, we obtain the following upper bound on :

£+1 n =1 2 5
1\ 2z &1 Ty \ =1~ &1 ) T &1 21
1- TnZ1 £—1
Tn—1 2§ S 2
=) (D) Tn=1
Comparing to the Step 3 expression, it suffices to show that the square bracketed term is
£+1
at most 5% This holds since the numerator multiplied by % is at most % + 7,2, by
Yn—1 < 1, while the denominator is at least this large by £ > 1. O

Step 5 Completing the Proof

We prove that the first equation in has a unique solution R, = @, /P, € [yn—1,1]. By
Step 3, the RHS of is positive, so the LHS, namely f(Ry)/g(Rn,n—1) must be too. By
Step 2 and since f is increasing by Lemma[C.2] this is impossible if R,, < z, where f < 0 < g.
Also by Step 2, since g is decreasing by Lemma g downcrosses at some R € (z,1), so
a solution with R,, > R is impossible (here f > 0 >g). So any solution lies in [z, R]. Here
the LHS of is increasing (f is increasing, g decreasing, and both positive), so there is at
most one solution. A solution exists by the intermediate value theorem, and lies in [v,—1, 1],

since the LHS is too small at R,, = v,_1 by Steps 3 and 4, and too large (c0) at R, = R. [J.

C.3 Post-Amnesia Beliefs Obey the Recursion for n = n

Define énofl and Qﬂo+1 as (resp.) the average beliefs in states below, above ng in § = L:

L L

9) _ Zk§n0—1 Py Rk . Zk§n0—1 PkQk _ Zang—i-l P @k . Zano—H Py,
no—1 = L » XMoo+l T L [

Zkgno_1 Py ZkSno—l P not Zkzio—l-l Pk Z;@'OH CTZ

Step 1 Deriwving Key Equations

Having derived beliefs @, Vn # ng, and ratios ¢, = pZ/p¥ (Vn < ng) and @, = pfl /pll

(Vn > ngp), we now derive the 3 equations that identify the remaining 3 key variables: Qp,,
X5 = (Zkgnrl p,%) /pk . and X¢ = (Ekznoﬂ pﬁ) /pk . First define the coefficients:

= 1<;<Z 1p’,§ (Pfik’l) = k>z+1p£ <ﬁ>

B == and b = —2 (53)
>k > Pk
k<ngp—1 k k>ip+1 k
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Equating the probabilities of leaving and entering state ng, we have pfl (1 - )\fm no) =

Zﬁéno p] ( + /\5 no) When 6 = L, using and multiplying by gfgl/pno, this is

1(6+1) 3(&-1)
()" )
_ n 2§ &\ & n 28 §+1 L1\~
- X5<1—n£—1+(1”"01>B>+X6(1—n5—1+5—1<1””01 >b>

And in state § = H, swapping £ + 1 with & — 1 and replacing pk by pk = Py Qk/,u, and

multiplying through by ngl ?,"0, we obtain the following analog to equation (/5

£+l e 1 B
Qn,\ 2 €—1 Py 1\ 2 0 2 Q, e B
= X 0 1 - P} 3 B
(Pno + n 1%10 1 O s\ 12 DE+1 P + Vo1 | Yno—1

N 26 @t £-1 G\ -
+X6<1_77§+1 P +§+1<1—’yn0_1>b> (55)

But since Zi\;l pz =1 and upkH = pﬁQk, we also know

(1= Qr) = X5 (1= Qupmt) + Xo (1= Q1) + (1= Qny)  (56)

Letting ¢ and d be the coefficients on X5 and Xg (respectively) in , and C' and D the
corresponding coefficients in , solve and for X5 and X¢ in terms of @y, as

o0 (5 s (8 ) ()

Hh‘wh

o nQ nQ
X5 = (¢cD — Cd) (57)
1 1
Qny \ 2+ e-1 £+1 Pry-1)2z¢D
X, = (C B C) <P"§> + (C@fyno_l B 5_710) ( Q?IO ) (58)
6 (cD — Cd)

Step 2 (Qn)N_; solves @ for nog iff Qn, obeys of the Outside-In Recursion.

We first simplify B and b from . By and the second expression in at n =mng—1,

£+1
n Qe §-1 2 Qr \ 2
k<nzol¢kf< ”0—> k<nZ o ( <P"_‘5+1>+§+1<Pno—1) )

3(6+1)
> Pk ’ _
:>§: k<ng—1 (Pn() 1) _ n €+1 5—1 _ Qn0,1 (59)
B > bk I—n 2 §+1 Py
k<ng—1
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And similarly, applying the second equation in to memory state ng + 1 yields

Pno %(5_1)
~ Dkzne+1 Pk <@> _on &-1 (QWH _&F 1) (60)

b =
D k>i Pk l—n 2 Py §-1

Now, and below give, respectively, the expressions D — d and D% — g—}'yno,ld

n 26 (Qnor1 £+1 £+1 1) -
1_n£+1( - —5_1)—(§_1—ﬁm%_n)(1—%W4)b (61)

n 26 [@Qnet1 €1
1—n€—1< Pny,  £+1

fM4)+u—%wnb (62)

And and give, respectively, the expressions ¢ — C' and cg—}yno,l — gf—}C’ :

1_775‘1‘1 5—1 Pno—l
2 -1 Qe 1 1 _
12775_51’)%0_1 <§+ 1 - ?Dno_ll> B <§ i_ 1 - /8(7710—1)) (1 _’Yno2—1> Vno—lB (64)

First consider . By the first term is gfflg, so it simplifies, using , as:

D—d Lo [(@ugrr £+
= '}/5071 (PZ;H — 5—7]_ = Xl (65)

n 2€ (5 +1 . Qn0—17n0_1> 4 (1 _ 'Yno—l) E (63)

c—C (61T Qner) L
et

By similar computations, plugging into and into and collecting terms,

And plug B = lig%l <§§4_€1 + % - ?3"0_1> from into and simplify to get:
70

E+1 _ &-1 -1 E+1
Dt —gnmod g Camtm @ (67)
2 - 2 -
1 —1 +1 —1
258 (1= (53 e 258 (1= (53 e )
D — Cd —1
while ¢ e S (68)



With these, expressions and directly simplify to those in , while plugging
into and multiplying by ﬁ% (X2 X3 — X1X4) / (1 — Qpy_1) yields for Qpn,. O

C.4 Existence, Uniqueness, and Bounds for n = ng

For uniqueness and to prove that Qn, € [Pny—1, FPrn,], We prove that expression for Qn,

is (i) decreasing in Qy,, (ii) positive at Qpn, = Pn,—1, and (iii) negative at Qn, = P,

Step 1: Proof of (i). Consider the coefficient in on pt — @Qn,. This is positive, since
Bayes consistency implies Qnofl < p, while by yp,—1 <1 < & the X;’s in obey X <

0 —

—otl 1< Xgpand Xy <1— Dng—1 < X3, thus Xo X35 — X1X4 > 0. Next take the coefficient
Pno 1

e+1

Prg—
on (%) 2. We claim that it has the following upper bound, which is negative by P, > p:

Qugtr _ g1 _ Engra™# (41 Qg (L_ +1) Qg1 =gt
Xl_QnO—’i - /’LXS < P"O 5_1 H‘_Qnofl 5_1 PnO _ Pn() -1 H“_Qnofl
— Qo +1)2 “1)? +1)2 “1\?
= Qo (D) (1 _ <§_T1> %0_1> Co (ﬁﬁ) %0_1>
For the middle bound: By we know b > 0 and B > 0, so (recalling § < 1) setting b=0
gives an upper bound on D — d from ; plug this into for an upper bound on X;
(this is the first ratio in our bound above). Similarly, set B = 0 for a lower bound on ¢ — C

in ; plug this into for a lower bound on X3 (the final ratio in our bound). Finally,
-1

7axy

] ™

-1
the coefficient in on (%) * has the following lower bound, positive by Py—1 <
no

Qn0+1 &1\ Qn(ﬁ»liu -1 ano*l (L -1 ) Qnoﬂ—@noﬂ
QTLO+1 B 'u/X > P'”Ofl S 7Q”0*1 &+l Pn071 o PnO £+1/7n071 N_éno—l

Xo—= 4 =
1= Qny1 121 e-1)? £2-1 e-1\?
" o1 A€ (1_(&1) 7”0—1> 5 (1_<£+1> o=t

For this, obtain a lower bound on X3 by setting b=0in and plugging into ; and an
upper bound on X, by setting B =0 for an upper bound on , then plug into . L.

Step 2: Proof of (ii). By Step 1, the final term in is a positive coefficient multiplied by
i — Qng, positive here (Qn, = P,,—1) by initial state restriction P,,_1 < u. So it suffices to

prove that the sum of the first two terms is positive at @y, = Py,—1, i.e. that
_ B . _ B
X, — MX;% fyio(i'l) + Xy — w)ﬁ >0 (69)
w— Qno—l B no—1
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Using ([(44)), the LHS of this expression is

Quor1 €41 [ ¢ E+1 ¢ QT H 26 en o = Qe
<Pn0 _§_1> <’7n0_1 5_1)+(€_1)2_M_Qn0—15_17”0_1 1_Pn0—1+ Pno—l

Since Pp,—1 < i, replacing 1 — 54 - in the final term by 0 gives lower bound:
77407

Quorr E+1Y [ ¢ E+1 A¢ 26 &1 (Q L —H
( PTLO - g_l> <7n01 é’ _ 1> + (é— B 1)2 - é’ _ 1’yno*1 Pno
(Qugn €1 [ E+1 26 &1 28 [ 2 1 (641 pymg—t
- ( Pny 5—1> <7"01 Teo1T 5—1”"°1> T [5—1 ~ ot (s —1 Pyt )]

The first bracketed term is proportional to b>0 by (60), . The second bracketed term
£+1 £-3
is also positive: It decreases in yp,—1, with derivative | v, * | —1)&v,2 | thus is at least its

value (0) at yp,—1 = 1. And the final term is positive: it’s at least its value if we replace
£+1

P,,—1 by upper bound p, which simplifies to (% — 1) (1 — 7n021> >0by 8 <1. .

Step 3: Proof of (iii). By Step 1, the final term in is a positive coefficient multiplied by

i — Qn,, nonpositive here (Qn, = Pp,) by initial state restriction P,, > u. So it suffices to

prove that the sum of the first two terms is negative at Q,, = Py, i.e. that

Q — Q — Lee_
PO C S et DS A i L) Y9 720 <0
n—= Qno—l n—= Qno—l

The LHS, using for the first line, then v,,—1 = P}?—l and P, > p for the inequality, is:
nQ

Qno—l-l 2€ 551 Qng—&-l —H 5 + 1 @no—l & §+ 1 @no—l

( P”O - 1) f_ 17”0_1 - <M - Qno—l 5 -1 B Pno—l +'7n0—1 a fj Pno—l
Qng—l—l K 25 % Qng—l—l K f + 1 @ng—l 3 5 + 1 @no—l

- ( Png—1 ) g—1Tm1 " (M—Qn0—1 E-1 Py T e 1 Py

Multiplying by (u — @no_ﬁ / (Qno 1 ,u>, it suffices to show that the following is negative:

= Qpo—1) 26 &1 €41 Qpyq ¢ E4+1Q, 1
Tno—1 — - +7n0—1 -
Pn()—l g_l 5_1 Pno—l §_1Pno—1
£-1

(i g-1s 2 ) (5—1_Qn0—1><2£ s e+l >
Py  E+1 M1 T E1) -1 \E+1 P ) \E-1

Tng—1 6_71%0—1
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The final bracketed expression is increasing in v,,—1, with derivative 5 3 +17 = (1 45 ),
and thus is at most its value at upper bound (0) v,,—1 = 1. The second last bracketed term
is proportional to B > 0 from . And the first bracketed term is decreasing in P,, > p,
thus at most its value at P,, = p, which simplifies to (1 — 7%(5_1))(6 —1)<0(by f<1). 0O

C.5 Computing Vectors pf and p”

To derive equation (45)): The final paragraph of Appendixderived the X5 = (D _j<pno_1 o)/ Pk
and X¢ = (D _j>no11 pr)/pk, expressions. For pk use 1 =3 pk = pk (1 + X5 + X¢). For
pl and pZ, use the definitions ¢; = pf /pt and @; pf /pH along with Bayes rationality to
rewrite X5 and Xg as X5 = p¥ (ngno_l qu) /pk and Xg = pk; (ijnoﬂ gZ)jQQ—IJ_V) /pk . O

D Optimal Memories When N = 2

D.1 Setting Up the Optimality Conditions

To derive : By Part 1 of Definition |1} beliefs in memory state 1 are simply )1 = Piz. In
ng = 2, we simplify as follows, noting that the highest cutoff (here P») is oo, thus the
first of its three expressions vanishes as do X7 and X4 from using vp,—1 = P1/Po = 0:

P p—Pz\ n -1 §+1
<Q2> (Qz— )-1_77 5 X3, where X3 = = z by . (70)

To derive , we now compute the post-amnesia payoffs. By and , these solve

(e B
17
Ay T A%, T"VS’ w}
where wH =1(1-FH (10 )) and wl = 7 FL (10 ) 72
( e Z 5110, (72

Using Cramer’s rule to solve for v§ — v{, letting T? =

=L 5+ )\ 9+ )\g,l, we obtain:

1 (wh — w))

n Y o

So the indifference FOC, namely 1 = Py (v4 — vi)/(vf — vk), becomes:

L, H H

1=P——*%——
IFH wffwé:
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To simplify, plug and into the Bayes consistency condition for memory state 1:

Oy o MaTl e inTh T 641010, -
PR TN TE T ey 1T T UTHE T i1
Plugging and into , we obtain the following FOC:
H s H s
e o P (om) - (o8 ) -
-1 L s L s

Evaluating this using F? from yields text FOC , noting that optimally, Q1 < 7/II <
Q@2: This is immediate for Q2 by m < Il and Bayes consistency (@1 < p < Q2), and if we
also had Q1 > 7T/H then by (B) FH (log ﬁ) = 5251( 22 ) 5 fori = 1,2, swapping & +1 with
€ —1 for F'X. Then (75)) fails; the final ratio exceeds & &1 +1 HQ thus the RHS exceeds Q2/p > 1.

D.2 Preliminary Comparative Statics

Rewrite as follows, with = 7/I1Q; and y = 7/I1Q2, where we just established z > 1 >y:

1 1 - A
= éiliﬂi’ where I = 62—51 +1 ZEI = (76)
§—1ullwzy — ngfT —SFy 2z
Lemma D.1 [, >0, [, >0, andy < I < x.
PROOF: Directly differentiating expression I in ([76)) yields
1
I r2 (&+1)
r— = I (z=1) I (77)
E )+ e (11
I e (5-1)
U 78
"1 = (1_$ 3(&— 1)) + & <1_yé<5+1>) (78)

It is immediate from and the third Lemma claim implies the first two, so it
suffices to show y < I < z. Suppose (toward a contradiction) I < y < x. Then I, < 0 < I,
(by and ), so since z > 1 > y, setting x = y = 1 yields a lower bound on [:

_ 5;751 _ ?y%(&rl) _%%iyg(fﬂ)

1> > lim Y =y
&1 +1 =(e-1) — E+1&6-1, e
_T_T () uTt _Tﬁ?ﬂ( )
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Contradicting I < y. Similarly if I > = > y, then the above expressions yield I, < 0 < I, so
x > 1> y implies that I is at most its value at © = y = 1. First evaluating I at x = 1 and

then taking limits as y — 1 yields upper bound x, contradicting I > x. O
Lemma D.2 21, +yl, <1

PrROOF: We wish to prove that the sum of the expressions in and is smaller than

1, i.e. (multiplying through by their common denominator) that

~L(e+1)(, L(et1) 2l 2 L(et1)
x2 (x—1)+y> (y 1><€_1(1 x2 >+5+1<1 Y2 )

Adding (1 — 1:7%(571)) - (1 - y%(£+1)) to both sides, this becomes
(-6 (bt < 24 (b £ i)

If both the LHS and RHS of are negative, it rearranges to the following lower bound on

I (where the numerator and denominator are positive in this case):

mln
+|/
Ju
—~
—_
@
,..
~—
‘«I‘r\
—~
—

1> (80)

If both the LHS and RHS of are positive, then it instead rearranges to the following

upper bound on I, again arranged so numerator and denominator are both positive:

£ (1—a” 521) L+1(1—y521>
&= 3
I< a _sgl) 1 g,l) (81)

We also must rule out the possibility that only the RHS of is negative, while it holds
trivially if only the LHS is negative. Lastly, from slightly rearranging , we actually have

% (1 _ 5(&1)) i (1 _ x—%(sfl))

1= (82)
(1 _yale- )) + &t (1 _ x—%<€+1>)
Comparing these expressions, it suffices to prove the following inequality:
=1 (1 _ 241 _ i
S (1-yrE) g (1-amE) -

(1 _ y%@—l)) Se-1 (1 . %(w))
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For then the bound in is below the smaller LHS expression in , the bound in
exceeds the larger RHS expression in , and I from lies between the two bounds in
. And also ensures that if the RHS of is negative, then so is the LHS.

Finally we prove that indeed holds, namely that its LHS is at most 1 while its RHS
is at least 1. Recall that x > 1 > y. First differentiate to obtain that the LHS of is

increasing in y whenever the following (derivative in y) is positive:
S e £ 0

L (1_y%(§+1)> §_1<1_y%(£+1))
2 gy v (1-yeD) >0@£+1< D) oY

I.e. whenever it exceeds y. So either the LHS is below y < 1, or it’s increasing in y and thus
at most its value as y T 1, which by I'hopital’s rule is 1. And by a symmetric argument, the
RHS of is increasing in « whenever it is smaller than z. So either it exceeds = > 1, or

it’s increasing in & and thus at least its limit as « | 1, which by ’hopital’s rule is 1. O
Lemma D.3 The RHS of is decreasing in w/I1 and in p.

PROOF: The p part is obvious. For «/II, recalling that x = 7 /11Q, and y = 7/I1Q2 depend
on it, the derivative of the RHS of in 7/II is

Jy“{i(I)'ﬁm”(é)ﬁm]

T I,—=>1 i I, — —yx 1
Yy H Ty Q1 vy Q2
I I, —1 I, —1 1 II 1 11
= +[$x +yy ]usmg—xan — =Y
Ty Ty x @ o Q2
This is negative iff I, + yI, — I < 0, which we proved in Lemma O

Lemma D.4 The LHS of falls in Q2 and rises in Py; z and the RHS of rise in 1.

ProoF: The LHS claim regarding @2 follows by immediate inspection, since belief consis-
tency demands Q2 > u. For Pj, differentiate to find that the LHS of ([70) increases in Py iff
“ > gﬂx this holds since by . ) the root z of f is smaller than gi,
no = 2 implies P; < u. For z, rewrite the equation f(z) = 0 as follows:

_ ey (51 _ &t 195) =1 (84)

while optimality of

1—7n 2 2
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Since the LHS clearly rises with n and falls with z (recalhng r<g +1) it can only remain
constant at 1 if x rises with 1. And finally, using using (84) to replace /(1 —n), the RHS of
is proportional to m2(5+1)w7 this rises in & which we just showed rises with 7.

D.3 Completing the Proof of Proposition

Step 1 The RHS of the FOC increases in both Q)1 and Q2.

Recalling x = 7/I1Q; and y = 7/11Q2, it suffices to show that the RHS of equivalent FOC
falls in  and y, i.e. that I/xy falls in = and y. This follows from combining the
Lemma result that «1,/I and ylI,/I are both positive, with the Lemma result that
they sum to less than 1. Thus zI,/I < 1, so I/x falls in x, and similarly I /y falls in y.

Step 2 If n rises, the Bayesian constraint requires that either Py rise or Q2 fall (or
both). Also, fixzing n and &, an increase in Py /u leads to an increase in both Q1/u and Q2/ .

For the first assertion, we know from Lemma [D.4] that an increase in 7 leads to an increase
in the RHS of , and also an increase in z which (by immediate inspection, recalling
Q1 < P < Q2) lowers the LHS of . So it must be accompanied by another change that
increases the LHS of . By Lemma this is to either raise P, or lower Q2. For the
second assertion, Lemma [D.4] directly shows that with no change in x, @2 and P, must move
the same direction to hold the LHS of constant, and )1 does too since Q1 = Piz. If p
also changes, simply divide numerator and denominator in the LHS of by i, and apply
identical logic to P1/p, Q1/u, and Qa/ .

Step 3 (Existence and Uniqueness) There is a unique solution to and

For existence, observe that for any Pj, there is a unique ()2 satisfying belief constraint
by the Intermediate Value Theorem (IVT), since the LHS is decreasing (and continuous) in
Q2 by Lemma and tends to oo as Q2 — 1, and 0 as Q2 — co. So, for any Q1, let Q5(Q1)
be the @2 that solves . Next, notice that for any Q2, the RHS of tends to zero as
r — oo i.e. Q1 = 0, while we established at the end of Section that it is too large at
x=1<%< @1 =7/Il. So again by the IVT, a solution @Q; to (with Q2 = Q5(Q1)) exists.
For uniqueness, consider a solution (Q1,@2) to and . If we increase Q1 = Piz, Qo
must also increase by Step 2. But then fails: both changes increase its RHS by Step 1.

Step 4 (Comparative Statics in /Il and pu) The optimal Py rises with 7/I1 and p.
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By Lemma the RHS of falls in 7/II and in p, so must be accompanied by an
offsetting increase. By Step 1 of this proof, this requires increasing )1 and/or Q2, but by
Step 2, Q1/p, Q2/u, and Py /p all move in the same direction. Thus P;,Q1, and Q9 all rise.

Step 5 (Comparative Static in 1) As n rises, Q1 rises and Q2 falls.

Since increasing n has no direct effect on FOC , Q1 and ()2 must move in opposite
directions. This cannot happen if Q2 rises; for then by Step 2, P; also rises, as does z by the
second assertion in Lemma [D.4] thus so does Q1 = Pjz. O.

D.4 Payoffs

The value in is 7 times

H H L L
ull w w w
— [p{{ﬁ +p£{ﬁ } + [pf : +p§ﬂ (85)
Since probabilities sum to 1 and Q; = up /pl, u(p¥ + pk) = = pr Q1 + pk Q2. Solving,

o _ Q1(Q2—p) g Qap—0Q1) ol = ot L_ ,02
& w(Q2 — Q1) and py = Q2 — Ql) oo ~ e,

Plugging these into , along with and for wf, recalling Q1 < {f < Q2, it becomes

Qe—p (1 1@\ p—Qu (UQe 1 ( m \#ED
Q2Q1<€<W> s oo (e (o) (50

E Omitted Value Function Proofs for Section

A. Proof of Lemma (3; Strict Convexity.

Step 1 Dug Benefits from Delay if the Next Shock is a Decision Shock:
pII(1 = FH (0 = £(p)) + (1 = p)mF* (£ — £(p)) — u(p) > 0 (87)

If p > p (symmetric steps apply if p < Zp)), reduces using u(p) = pll and P = % as:

This holds by : for P > {1, the final bracketed ratio is %H”—P 0.
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Step 2 Dug Prefers Amnesia Shocks be Delayed: . M (p)f > Vz for p € [pk—1,pk)

By , F™ increases in a, while v increases in n by Lemma Thus, fixing p:

H H _
) 3/\ga(l7) VTIL{ _ Z oF (g(lgi {(p)) (VTIL{ o VTI7:I+1) <0

H _ H
= UVj .

And if p is in memory state k, then limy oo A (p) = 1 = 3, (lima—yoo A (p)) v
Altogether, for fixed p, the sum Y, (lima—00 A (p)) v converges to v} from above. Similar

steps apply in state 6 = L. .

Step 3 V,, is strictly convex for each n.

Subtracting from a (1 — p, p) weighted average of and we discover:

0 = n(pu(t—FT(@—tp) + (L= p)rF (= E(p)) — u(p))

> _ 2p°(1 —p)? v

(@+0)02 )

+(1—n) (Z(pkf(p)Vf + (1= p) A (p)vy) — vn(p)

n

Since the first two terms are strictly positive by the first two Steps, we have V" (p) > 0. O

B. Proof of Proposition We work with likelihood ratios Q(¢) = €, Qn = ¢n/(1 — qn)
and P, = p,/(1—p,). Fix an optimal policy, and in a further abuse of notation, define A% (Q)
as the transition chance (in 6) from belief Q) to memory state n by the next distraction shock
(as in but replacing @, by Q); and define w?(Q) as the payoff starting from belief Q
conditional on next shock a decision, in 6 (given by ([10)), replacing @, by Q).

Step 1: Distraction Shocks. Let G(Q) be the gain with no distraction shock at belief @,

namely Q(V.7(Q) —v) +VI(Q) —nuk. By and (19), recalling v? = V(Q,,) from (12):
GQ) = 7(Qw"(Q) —w"(Qu) + (w"(Q) —w"(@n))) (88)
+ (L=mn) <Z QU (@) = A (@) + (A (Q) — Aé(Qn»v,f) (89)

k
Notice that G(Q,,) = 0, and so since G is convex in ) by Lemma |3)), it suffices to prove that
G'(Qn) = 0, i.e. the gain reaches a minimum of 0 at @Q = @,,. For this, first consider the n
coefficient in (88). The derivative in @, evaluated at @ = Qn, is Qn(w) (Qn) + (W) (Qn),

which is zero by Step 1 in the Appendix |B| proof. Next consider . Using M (Q) =

1 - Zk?én )\Z(Q), rewrite it replacing each V,f with V,f — Y and summing only over states
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k # n. Consider this sum for states k¥ < n — 1 (a symmetric argument applies for states

k > mn+1). First rewrite with cumulative transition chances and incremental payoff gaps:

> 0@ - M@0 - = T (# (loer) - P (1o o ) ) (o~ k)

k<n—1 k<n—1

Now take @ times this expression in § = H, plus this expression in # = L (this is the

coefficient in for memory states k < n — 1). The derivative in Q, at Q = Q,, is:

5 [oy (9 (s )t 5 4 o)t ] o0

k<n—1

£+1

But from , recalling that here Q > P, by construction, we have '/ (log %) = 52;61 <%> T,

and in state 8 = L just swap £ + 1 and £ — 1. Using this, evaluate the derivative in as
follows, which vanishes (as desired) by the indifference FOC in Proposition

-1

-1 1/ P 3

52525 <Qk> S Py — o) — - b)) o1)
n n k;

Step 2:  Decision Shocks. We prove that if @ < w/II, the gain to learning is positive

V@ > Pi, while if ) < P it is increasing in @) and negative at ) = 0. Converting and
to likelihood ratios, 1 + ) times the gain to learning is:

N N
Q (an(@ (A=) A (Q)fo) + (nwL(Q) + (1= 1) ZAL(Q)V£> - (92)
n=1 n=1
This is negative as () | 0: For then by , Dug has zero chance of leaving state 1 by the
next shock, so reduces using to nm + (1 — n)vl — 7. This is negative if vf < 7,
which holds since combining and yields vf < nwt + (1 — vl = vF < wl, while
Corollary |1f implies that P; hence @ is strictly positive, so by , wlL < .
Next, decompose as follows, letting 1 < k < N be the index with P, 1 < Q < Pj:

(QwH(Q) wH (@) + 1 —n) (Quf +vf) —= (93)
k—
Z QNI = vl = NH@ (v — ) (94)
n=1
N
+(1=n) > (@NQ@E = v = M) = vh)) (95)
n=k+1
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It remains to prove that this is increasing in @ < P; (k = 1) and positive when @ > P;(k > 2).

First consider , if k > 2 (otherwise it vanishes). Since @ > Py_1 > P, for all terms in this
$(&+1) 1
sum, we have from that M7 (Q) = 5%1 (%) : <1 - 72(£+1)>, and just swap & + 1

n—1

with £ — 1 to obtain AL(Q). With this, using 8 from (0], becomes (1 — 7)) times

6H§X f&”oﬂﬁﬂ)@=¢wm%emﬁ—ﬁn

v,

H
This is positive, by S(7,—1) < 1 along with the Proposition [I{ FOC M = 1 Thus

T
vk I/n+1 P,

H H
Vi =V, P, P,
P, " is a welghted average of terms P B Pk which are at most 1 by k —1 > n.

Similarly rewrite as 1—n times the following, using transition chances for Q < P, < P,_1:

§+1§:<

=k+1

364D -1 H H L L
) Q—nl )m%m%—%>—m%4m%—%n

n 1

This is positive and increasing in (), since each square bracketed term is positive again using

> 1.

H
un ”k

8 <1 and the Proposition 1mphcat10n that P,— 1
Finally we prove that (| is increasing in Q, and positive at ¢ > P;. Clearly the
coefficient on 1 — 7 in is increasing in @, and to see that the coefficient on 7 is too,

use to rewrite it (Qw™(Q) + w™(Q)) as

1 1
1 /1) z¢ mnQ\ =€ nQ\ 2+
o ) o tne L4t (IQ (96)
25 s 2& T E\m
To complete the proof, we prove that is positive at @ = Py (k = 2). Since the coefficient

on 7 exceeds 7 by ), it suffices to show that the one on 1 —7 does too, i.e. Plvf -i-l/é:’ > .
For this, it suffices to prove that Q1 V{{ + V{: > m, since by Proposition

H H
14 — U

Pl% = 1:>P11/2H—|-I/§:P1V{{+V1L ZQU/F—FV{/ (97)
by =13

Now rearrange to obtain (v} — wf) = (1 —1) X ,25 A, (V5 — 1}). Taking ratios,

V{{_w{{ - ZnZQ)‘fn(VT{I_V{{) > i since A{{n(yrlj_yf;[) _ 1 P, V;L{_VlH
w%_V% Zn22)\fn(V1L_VTIL/) Ql’ )\in(ylL_VfL/) /8(771—1) Q1 VlL_Vle

(which exceeds - again using B < 1 along with the FOC’s in Prop051t10n . So Qvil + vk
exceeds Q1w1 —|— wl , which by (96) at Q@ = Q1 exceeds 7. .
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F Proofs for Value Comparative Statics in Section

A. Proof of Proposition To prove that Dug’s value falls in both ¢ and ¢, it suffices
to prove that it falls in both n = 0%5 and in £ = \/m . For n, consider the value
VY from . The terms w? from do not depend on 7, so we focus on the changes
via p?. Recall that by , p? is the steady-state distribution of a perturbed Markov process
where Dug is constrained, in every memory state, to jump to initial state ng with chance
1. So lowering 71 relaxes this constraint, and thus Dug’s optimized value falls in 7. For
¢, differentiate to see that F¥ rises in &, while F falls in &. Thus raising ¢ has two
implications for any fixed policy: First, the expected values wl and wk from both fall,

(reducing the value). Second, the cdf Ele Az,k rises when § = H, and falls when § = L. In

state H, this induces a first-order stochastic decrease in )‘ﬁ o

of increasing (by Lemma [2)) function v

thus reducing the expectation
, and hence reducing V. And similarly in state L,
where a first order increase lowers the expectation of decreasing function 2.
B. Proof of Proposition [} For the limits as o | 0 and N 1 co: That the limits are the
same follows from , which at a = 0 reduces to the standard HJB equation, reflecting
rational (N = 0co) learning. The o = 0 limit value was explained in the text.

For the limits ¢ — 0, § — 00, 0 — 00, and o — oo: If V*(1) and V*(00) share a limit,
then this must be the limit for all N, since V*(N) is increasing in N. This logic yields the
result for o« +9 — 0, 0 — 0, 6 — o0, and ¢ — oco. Now consider the a — oo limit, so
n — 1 and £ — co. Then pf), — 1, and so Qn, — 1, thus F?(log(m/(T1Qy,))) — 0, and so
V*(N) — pIl by (L1).

Finally, for the limit § | 0: Since V* increases in N, it suffices to prove that Dug earns
VI with two memory states. From Section [5, beliefs are given by @1 = Pyz and , where
z is the root of equation . As 9 and hence n — 0, z — 0 by inspection of . But then
for any P, > 0, Q1 = Piz — 0. And Q3 — oo, since the RHS of tends to 0 with x, thus
the LHS must too, requiring Q2 — oo. And so taking limits in as @1 — 0 and Q2 — ©

(recalling £ > 1), we obtain Dug’s limit value:

£+1 —1
- B . Qe—p (1 /1Q1) % p—C1 (1IQx 1/ m \ 2
%1_{%1) (2) = WQQT?O%liO <Q2—Q1 (5 < T ) +1> * Q2 — Q1 ( i 3 <HQ2> ))

(Qz —H /HTQ2>
Q2 Q2 ™

= 7w lim

Qatoo a
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