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Abstract

This paper studies strategic information transmission in a finite horizon environment where, each period,
a privately informed expert sends a message and a decision-maker takes an action. We show that communi-
cation in this dynamic environment drastically differs from a one-shot game. Our main result is that, under
certain conditions, full information revelation is possible. We provide a constructive method to build such
fully revealing equilibria; our result obtains with rich communication, in which non-contiguous types pool
together, thereby allowing dynamic manipulation of beliefs. Essentially, conditioning future information
release on past actions improves incentives for information revelation.
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1. Introduction

That biased experts impede information transmission often has serious consequences: Worse
projects are financed, beneficial reforms are blocked, and firms may fail to reward the most pro-
ductive employees. The seminal analysis of strategic information transmission by Crawford and
Sobel [10] has seen applications ranging from economics and political science to philosophy and
biology.1 They assume that a biased and privately informed expert and a decision-maker interact
only once. The conflict of interest results in coarse information revelation, and in some cases,
no information revelation at all. There are, however, many environments in which the expert
and receiver interact repeatedly and information transmission is dynamic. This paper explores
sequential choice contexts in which the decision-maker seeks the expert’s advice prior to each
decision.

We study a dynamic, finite-horizon extension of the strategic information transmission of
Crawford and Sobel [10]. In each period, an expert sends a message and a decision-maker takes
an action. Only the expert knows the state of the world, which remains constant throughout the
game. We maintain all other features of the Crawford and Sobel environment, and in particular,
the conflict of interest between the expert and decision-maker. Our goal is to investigate the
extent to which conflicts of interest limit information transmission in multi-period interactions,
and whether or not it is possible for the decision maker to learn the truth.

We find that when the decision-maker and the expert are equally patient, it is often possible
to elicit the precise truth from the expert, but this may be very costly in the early part of the
game. Our analysis suggests that fully revealing equilibria become easier to construct, with better
welfare properties, if the decision-maker places a greater weight on the future than does the
expert. Many situations have this feature. For example, consider an individual consulting a doctor
or a lawyer for the best course of action. Final decisions – e.g. whether or not to pursue a costly
course of treatment, whether or not to file a lawsuit – are clearly the most important.

Our most surprising and difficult-to-prove result, Theorem 1, establishes that full information
revelation is possible. This result obtains in a finite horizon environment where the two players
are equally patient. The construction of the fully revealing equilibrium relies on two key features.
The first is the use of what we call “separable groups”: the expert employs a signaling rule in
which far-apart types pool together initially, and eventually find it optimal to separate and reveal
the truth. The second feature is to make advice contingent on actions: the expert promises to
reveal the truth later, but only if the decision-maker follows his advice now; this initial advice,
in turn, is designed to reward the expert for revealing information. In a nutshell, communication
in a multi-period interaction is facilitated via an initial signaling rule that manipulates posteriors
(in a way that enables precise information release in the future), initial actions which reward the
expert for employing this signaling rule, and trigger strategies which reward the decision-maker
for choosing these initial actions.

More broadly, our equilibrium construction combines mechanism design techniques with in-
sights and ideas from the repeated games literature. On the expert’s side, we characterize the
shape of the “reward functions” (measured in payoffs) that would incentivize information reve-
lation in a direct mechanism, and then determine the action sequences (ending with the action
that a fully informed decision-maker will choose) that give rise to these payoffs. On the decision-

1 For a survey with applications across disciplines, see Sobel [28].
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maker’s side, we use folk-theorem-type arguments to ensure that he will comply with the desired
equilibrium action sequences.

We now explain in more detail our construction of a fully revealing equilibrium. We first show
that it is possible to divide all states into separable groups. A separable group is a finite set of
states (types), which are sufficiently far apart that each type would rather reveal the truth than
mimic any other type in his group. The expert’s initial signaling rule reveals the separable group
containing the truth; therefore, this creates histories after which it is common knowledge that the
decision-maker puts probability one on a particular separable group, at which point the types in
this group will find it optimal to separate. The idea of initially pooling together far-away inter-
vals of types, who will then later have an incentive to separate, was first proposed in Krishna and
Morgan [19]. They demonstrated how this could increase information revelation in a variant of
Crawford and Sobel’s [10] game where the expert and the decision maker engage in a “conver-
sation” (exchange of messages through a jointly-controlled lottery) before the decision-maker
chooses his action.

In this paper, we study a dynamic extension with many communication-decision rounds, and
demonstrate that if the initial groups of pooled types are finite and chosen in the right way, it is
possible for the decision-maker to extract all information from a biased expert. This is technically
challenging for two somewhat interrelated reasons: There is a continuum of states and finitely
many periods over which learning can take place. We then have to divide the state in a continuum
of separable groups, so that eventually the expert will be willing to tell the truth.

The division of all types into separable groups is quite delicate: The expert anticipates that
once he joins a separable group, he will forgo his informational advantage. Thus, for the expert
to join the separable group containing his true type, we have to make sure that he does not
want to mimic a nearby type by joining some other separable group. This is difficult since in
our model there are no transfers. We succeed in designing initial actions, which ensure that any
future gain to the expert from mimicking some other type is offset by the initial cost. These
expert-incentivizing actions are not myopically optimal for the decision-maker, so we employ
trigger strategies: the expert (credibly) threatens to babble in the future if the decision-maker
fails to choose the actions that he recommends at the beginning. The final part of the proof, then,
shows that we can design the separable groups and initial actions such that the decision-maker
would rather follow the expert’s initial advice, knowing that he will then eventually learn the
exact truth, than choose the myopically optimal action in the initial periods, knowing that he will
then never learn more than the separable group containing the truth. This latter part – finding
expert-incentivizing actions which the DM is actually willing to choose – is perhaps the most
difficult aspect of our construction.

We emphasize several additional differences between dynamic and static communication
games. First, in contrast to Crawford and Sobel [10], not all equilibria are equivalent to ones
with partitional structure (equilibria where a message is send by a connected set of types). If
attention is restricted to partition equilibria, learning quickly stops, whereas, as we discussed,
fully revealing equilibria exist. Second, welfare properties of equilibria also differ in a dynamic
setup. Crawford and Sobel [10] show that, ex-ante, both the expert and the decision-maker will
(under typical assumptions) prefer equilibria with finer partitions. We provide an example that
shows that it is not necessarily the case for dynamic equilibria.2 We also present an example in

2 A similar phenomenon occurs when communication is noisy, as shown in an example of the working paper version
of Chen, Kartik, and Sobel [9]. In their example, a two-step partition welfare dominates a three-step partition.
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which dynamic partition equilibria can strictly welfare-dominate the best static equilibrium, and
an example showing that non-partition equilibria can strictly welfare dominate the best partition
equilibrium.

Our work shows that the nature of dynamic strategic communication is quite distinct from
its static counterpart. In the static case, because of the conflict of interest between the decision-
maker and the expert, nearby expert types have an incentive to pool together, precluding full
information revelation. The single-crossing property also implies that at equilibrium, the action
is a monotonic step function of the state. These two forces make complex signaling (even though
possible) irrelevant. In the dynamic setup, the key difference is that today’s communication sets
the stage for tomorrow’s communication. Complex signaling helps in the dynamic setup, because
it can generate posteriors that put positive probability only on expert types who are so far apart,
they have no incentive to mimic each other. This is what enables fully revealing equilibria.

Related literature. Crawford and Sobel [10] is the seminal contribution on strategic informa-
tion transmission. That paper has inspired an enormous amount of theoretical work and myriads
of applications. Here we study a dynamic extension. Much of the previous work on dynamic
communication has focused on the role of reputation; see, for example, Sobel [27], Morris [21],
and Ottaviani and Sorensen [22,23]. Some other dynamic studies allow for multi-round com-
munication protocols, but with a single round of action(s). Aumann and Hart [4] characterize
geometrically the set of equilibrium payoffs when a long conversation is possible. In that paper,
two players – one informed and one uninformed – play a finite simultaneous-move game. The
state of the world is finite, and players engage in direct (no mediator) communications, with a
potentially infinitely long exchange of messages, before simultaneously choosing costly actions.
In contrast, in our model, only the informed party sends messages, the uninformed party chooses
actions, and the state space is infinite.

Krishna and Morgan [19] add a long communication protocol to Crawford and Sobel’s [10]
game, and Goltsman, Hőrner, Pavlov and Squintani [14] characterize such optimal protocols.3

Forges and Koessler [12,13] allow for a long protocol in a setup where messages can be certi-
fiable. In all those papers, once the communication phase is over, the decision-maker chooses
one action. In our paper, there are multiple rounds of communication and actions (each expert’s
message is followed by an action of the decision-maker). The multiple actions align incentives
in a way that was not possible in these earlier works: the expert is able to condition his advice
on the decision-maker’s past behavior, and additionally, the decision-maker is able to choose ac-
tions which reward the expert appropriately for following a path of advice that ultimately leads
to revelation of the true state.

In our setup, the dynamic nature of communication enables full information revelation. In
contrast, full information revelation is not possible in the dynamic setup of Anderlini, Gerardi,
and Lagunoff [2], who consider dynamic strategic communication in a dynastic game, and show
that if preferences are not fully aligned, “full learning” equilibria do not exist.4 Renault, Solan,

3 They examine the optimal use of a third party, such as a mediator or negotiator, to relay messages. For the expert, this
model is strategically equivalent to ours: his expected payoff is the same whether he induces a sequence of actions; or a
probability distribution over these actions. For the decision-maker, however it is not: In our dynamic setup, the DM’s past
actions can affect future communication, and so it is possible to induce him to choose actions which are not myopically
optimal.

4 In their model, the state space is finite (0 or 1), and there is no perfectly informed player: each receiver gets a signal
about the state and a message from his predecessor, and then becomes the imperfectly informed advisor to the next player.
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and Vielle [26] examine dynamic sender-receiver games, and characterize equilibrium payoffs
(for quite general preferences) in an infinite-horizon model with a finite state space, and a state
that evolves according to a stationary Markov process. In contrast, we assume a continuous state
space with persistent information, and our focus is on the possibility of full information revelation
in finite time.5

Our model bears some similarities to models of static strategic communication with multiple
receivers. In those models, see, for instance, Goltsman and Pavlov [15], the expert cares also
about a sequence of actions, but in contrast to our model, those actions are chosen by different
individuals. An important difference is that in our model, the receiver cares about the entire vector
of actions chosen; in those models, each receiver cares only about his own action. This enables
our use of trigger strategies, which we find is a necessary feature of equilibria with eventual full
information revelation. Still, some of the properties of the equilibria that we obtain also appear
in the models with multiple receivers. In particular, our non-monotonic example (Example 3) in
Section 4 resembles Example 2 of Goltsman and Pavlov [15]. It is also similar to Example 2
in Krishna and Morgan [19], whereas our Example 2 is similar to Example 1 in Krishna and
Morgan [19].6

Conceptually, our result relates to a large literature on repeated games with incomplete infor-
mation. The expert knows that if he reveals the state, then he loses any ability to influence the
decision-maker’s subsequent action choices; due to a conflict of interest between players, this
creates an incentive to conceal some information. At the same time, a completely uninformed
decision-maker may choose actions which are bad for both players. The question is then, how
much information should the expert reveal.

In an early related result, Aumann and Maschler [5] studied optimal revelation policies in
infinitely repeated zero-sum games, with only one player informed about the (binary) state. They
found that the amount of information revealed at equilibrium depends on the degree of conflict
of interest,7 just as we find that fully revealing equilibria are possible only when the conflict of
interest is sufficiently small. Information revelation was further facilitated in their model by the
fact that both players choose actions (which allows the expert to restrict the outcome choices
available to uninformed player), and the fact that their state space was finite. More recently,
there has been work on constructing fully revealing equilibria in the known-own-payoffs case,
where each player’s payoff depends only on his own private type (see, for example, Athey and
Bagwell [3] and Peski [25]). In contrast, we assume that both players’ payoffs depend on a

5 Ivanov [16] allows for a dynamic communication protocol in a setup where the expert is also initially uninformed,
and the decision-maker controls the quality of information available to the expert. He employs separable groups, but
in a much different informational setting: His decision-maker has a device that initially reveals (to the expert only) the
separable group containing the truth, and contains a built-in threat to only reveal the exact state if the expert reports this
information truthfully. Compared to our model, this eliminates all incentive requirements for the decision-maker, and
imposes an additional cost on the expert (namely, he will fail to learn the truth himself) if he fails to follow the prescribed
strategy, thus weakening the required incentive constraints.

6 Equilibria can be non-partitional also in environments where the decision-maker consults two experts as in Krishna
and Morgan [18].

7 For example, they trivially obtain full information revelation in a game where the informed player chooses either
T or B , the uninformed player chooses L or R, and the informed player (P1) earns payoff 0 from outcomes (B,R) in
state 1 and (T ,L) in state 2, and payoff 4 in all other cases. Clearly, it is optimal for player 1 to play T in state 1 and B

in state 2, guaranteeing his highest possible payoff (4) regardless of P2’s action choice. Of course, such a fully revealing
strategy would not be optimal if it led P2 to choose an action which P1 strongly disliked. P1 also would not reveal the
truth if he could send only a payoff-irrelevant message, then letting P2 choose the outcome (as is the case in our model).
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common state variable. Finally, there is a large literature on reputation, in which one player with
private information wishes to convince his opponent that he is a particular “type”, in the hope of
inducing desirable action choices. This idea is present here, too: indeed, much of the difficulty
in constructing fully revealing equilibria arises from the fact that the expert is “biased”, and in
particular, would like to convince the DM that the state is something other than it is. With a
myopic uninformed player, it is generally the case that the informed player successfully builds a
reputation as his most-preferred type; in other words, fully revealing equilibria do not exist.

However, this existing literature deals almost exclusively with a finite (usually binary) state
space, whereas our state space is a continuum. This makes it much more difficult to elicit the
truth from a biased expert: As described in the equilibrium outline above, initial actions must be
chosen carefully to incentivize the expert to tell the truth, rather than mimicking nearby types.
This constraint would of course not be present in a finite model, with types spaced sufficiently
far apart. Additionally, in most existing models, both players choose actions, and the horizon is
infinite. In our model, the horizon is finite, and only the informed player chooses actions (which
then determine both players’ payoffs). Therefore, existing results say little about the extent to
which information revelation is possible in our game.

Summarizing, we study a finite-horizon setting in which both players’ payoffs depend on
a common state variable, about which only one player is informed. Preferences are partially
aligned, but with a conflict of interest, as in Crawford and Sobel [10]. For this setting, fully
revealing equilibria have proved difficult, and have previously been found only for the follow-
ing modifications of the model: if the expert consults two experts as in Battaglini [6], Eso and
Fong [11], and Ambrus and Lu [1]; when information is completely or partially certifiable, as in
Mathis [20]; and when there are lying costs and the state is unbounded as in Kartik, Ottaviani,
and Squintani [17]. In the case of multiple experts, playing one against the other is the main force
that supports truthful revelation. In the case of an unbounded state, lying costs become large and
support the truth. In the case of certifiable information, one can exploit the fact that messages
are state-contingent to induce truth-telling. All these forces are very different from the forces
behind our fully revealing construction, which exploits the alignment of incentives that arise in a
dynamic setting when both players’ payoffs depending on a common state variable.

2. Motivating example: an impatient financial advisor

One of the striking results of the static strategic communication game is that there exist no
equilibria with full information revelation. Although the state can take a continuum of values, all
equilibria are equivalent to one in which the expert sends at most finitely distinct many signals to
the decision-maker. That is, a substantial amount of information is not transmitted. This example
motivates the general construction used to establish Theorem 1.

We show how to construct a fully revealing perfect Bayesian equilibrium when the expert is
myopic, using just two periods. There are two essential ingredients of this example. First, the set
of types that pool together in the first period are far enough apart that they can be separated in the
second period: that is, each possible first-period message is sent by a separable group of types.
Second, each separable group induces the same optimal (for the decision-maker) first-period
action. This implies that the expert does not care which group he joins (since a myopic expert
cares only about the 1st-period action, which is constant across groups).

Example 1 (Fully revealing equilibrium with impatient experts). Suppose there is an expert E
(financial advisor) and a decision-maker DM (an employee). The expert knows the true state of



310 M. Golosov et al. / Journal of Economic Theory 151 (2014) 304–341
the world θ , which is drawn from a uniform distribution on [0,1] and remains constant over time.
The players’ payoffs in period t ∈ {1,2} depend on both the state, θ , and on the action chosen by
the decision-maker, yt ∈ R. More precisely, payoffs in period t are given by

uE
t (yt , θ, b) = −(yt − θ − b)2 and uDM

t (y, θ) = −(yt − θ)2, (1)

where b > 0 is the expert’s “bias”. The expert is myopic, with discount factor δE = 0; the con-
struction works for any discount factor for the decision-maker.

The expert employs the following signaling rule. In period 1, expert types { 1
8 − ε, 3

8 + ε,
4
8 +ε,1−ε} pool together and send message mε , for all ε ∈ (0, 1

8 ). For all type pairs { 1
8 + ε̃, 7

8 − ε̃}
with ε̃ ∈ [0, 1

4 ], the expert sends a message mε̃ . Expert types {0, 4
8 ,1} send message mb . That

is, we have two families of separable groups indexed by ε and ε̃ that cover the entire interval
except the types {0, 4

8 ,1}, and 1 additional separable group consisting of these remaining states.
Noting that the expected type in each of these information set is 1

2 , it follows that the DM’s best
response in period 1 is to choose the action y1(mε) = y1(mε̃) = y1(mb) = 1

2 , for all equilibrium
messages mε , mε̃ , and mb . In period 2, the expert reveals the truth, and so the DM chooses an
action equal to the true state. After any out-of-equilibrium initial message, the DM assigns equal
probability to all states, leading to action yout

1 = 0.5. After any out-of-equilibrium second-period
message, the DM assigns probability 1 to the lowest type in his information set (prior to the
off-path message), and accordingly chooses an action equal to this type.

We now argue that this is an equilibrium for any b � 1
16 : First, notice that all messages (even

out-of-equilibrium ones) induce the same action in period 1. Hence, the expert is indifferent
between all possible first-period messages if he puts zero weight on the future. So, in partic-
ular, a myopic expert will find it optimal to send the “right” message, following the strategy
outlined above. Now consider, for example, the history following an initial message mε . The
DM’s posterior beliefs assign probability 1

4 to each of the types in { 1
8 − ε, 3

8 + ε, 4
8 + ε,1 − ε}.

The expert’s strategy at this stage is to tell the truth: so, if he sends a message that he is type
k ∈ { 1

8 − ε, 3
8 + ε, 4

8 + ε,1 − ε}, then the DM will believe that k is the true state, and accordingly
will choose action k; if the expert deviates to some off-path message, then the DM will assign
probability 1 to the lowest type in his information set, 1

8 − ε, and accordingly choose action
1
8 − ε. Therefore, to prove that the expert has no incentive to deviate, we need only show that
each expert type k ∈ { 1

8 − ε, 3
8 + ε, 4

8 + ε,1 − ε} would rather tell the truth, than mimic any of
the other types in his group. Type k prefers action k to k′ whenever

−(k − k − b)2 � −(
k′ − k − b

)2 ⇔ (
k′ − k

)(
k′ − k − 2b

)
� 0

i.e., whenever k′ < k, or whenever k′ > k + 2b. So in particular, to make sure that no type in
{ 1

8 − ε, 3
8 + ε, 4

8 + ε,1 − ε} wishes to mimic any other type in this group, it is sufficient to
make sure that every pair of types are at least 2b apart. Since the closest-together types in the
group, 3

8 + ε and 4
8 + ε, are separated by 1

8 , we conclude that the group is separable whenever
1
8 > 2b ⇔ b < 1

16 . And similarly after messages mε̃ and mb .
This construction does not apply with a more patient expert (δE > 0), because it does not pro-

vide a forward-looking expert with incentives to join the “right” separable group.8 For example,

8 Another possible critique of the construction, is that it is fragile in the sense that the expert is indifferent between any
of the messages used in equilibrium. However, this kind of “fragility” is common in game theory, and indeed present in
every mixed-strategy equilibrium.
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consider type 3
8 , and suppose that b = 1

16 . The truthful strategy is to reveal group { 1
8 , 3

8 , 4
8 ,1}

in period 1, and the tell the truth in period 2, inducing actions (y1, y2) = ( 1
2 , 3

8 ). However such
strategy cannot be part of an equilibrium if δE > 0. The best deviation for θ = 3

8 is to mimic type
3
8 + 1

16 – initially claiming to be part of the group { 1
8 − 1

16 , 3
8 + 1

16 , 4
8 + 1

16 , 7
8 − 1

16 }, and then sub-
sequently claiming that the true state is 3

8 + 1
16 – thereby inducing actions (y1, y2) = ( 1

2 , 3
8 + 1

16 ).
This deviation then leads to no change in the first-period action, but the 2nd-period action is now
equal to type 3

8 ’s bliss point, 3
8 + 1

16 . When δE > 0 we need to provide the expert with better
incentives to join the “right” separable group: since θ prefers θ + b’s action in the future, he
must prefer his own action now. This is much more complex, but in Section 5, we show how to
construct such separation-inducing actions.

3. The model

There are two players, an expert (E) and a decision-maker (DM), who interact for finitely
many periods. The expert knows the true state of the world θ ∈ [0,1], which is constant over time
and is distributed according to the c.d.f. F , with associated density f . Both players care about
their discounted payoff sum: when the state is θ and the DM chooses actions yT = (y1, . . . , yT )

in periods 1,2, . . . , T , payoffs are given by

Expert: UE
(
yT , θ, b

) =
T∑

t=1

(
δE

)t−1
uE(yt , θ, b),

DM: UDM(
yT , θ

) =
T∑

t=1

(δDM)t−1uDM(yt , θ)

where b > 0 is the expert’s “bias” and reflects a conflict of interest between the players, and
δE, δDM are the players’ discount factors. We assume that uE(yt , θ, b) and uDM(yt , θ) satisfy
the conditions imposed by Crawford and Sobel [10]: for i = DM,E, ui(·) is twice continuously
differentiable, ui

1(y, θ) = 0 for some y and ui
11(·) < 0 (so that ui has a unique maximizer y for

each pair (θ, b)), and that ui
12(·) > 0 (so that the best action from an informed player’s perspective

is strictly increasing in θ ). Most of our main results will make the more specific assumption that
preferences are quadratic, as given by (1).

At the beginning of each period t , the expert sends a (possibly random) message mt to the DM.
The DM then updates his beliefs about the state, and chooses an action yt ∈ R that affects both
players’ payoffs. Let yDM(θ) and yE(θ) denote, respectively, the DM’s and the expert’s most
preferred actions in state θ ; we assume that for all θ , yDM(θ) �= yE(θ), so that there is a conflict
of interest between the players regardless of the state.

We assume that the DM observes his payoffs only at the end of the game. This is to rule out
cases in which the DM can make inferences about the state from observing his payoff, as we
wish to focus solely on learning through communication.

A strategy profile σ = (σ i)i=E,DM , specifies a strategy for each player. Let ht denote a history
that contains all the reports submitted by the expert, mt−1 = (m1, . . . ,mt−1), and all actions
chosen by the DM, yt−1 = (y1, . . . , yt−1), up to stage t . The set of all feasible histories at t

is denoted by Ht . A behavioral strategy for the expert, σE , consists of a sequence of signaling
rules that map [0,1] × Ht to a probability distribution over reports in the Borel set M. Let
q(m|θ,ht ) denote the probability that the expert reports message m at history ht when his type
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is θ . A strategy for the DM, σDM , is a sequence of maps from Ht to actions. We use yt (m|ht ) ∈R

to denote the action that the DM chooses at ht given a report m. A belief system, μ, maps Ht

to the set of probability distributions over [0,1]. Let μ(θ |ht ) denote the DM’s beliefs about the
experts’s type after a history ht .9 A strategy profile σ and a belief system μ is an assessment. We
seek strategy profiles and belief systems that form Perfect Bayesian Equilibria, (PBE).10

We use the terminology as follows: a babbling equilibrium is one in which all expert types
θ ∈ [0,1] follow the same strategy, and thus the DM chooses some constant action ŷ after all
histories. A partition equilibrium is one in which each message along the equilibrium path is sent
by a connected interval of types, and each type in the interval sends the message with probability
one. Following Crawford and Sobel [10], we refer to the expert’s strategy in such equilibria as
uniform signaling. Finally, we say that an equilibrium is fully revealing if there exists a time
T̂ � T such that for all θ ∈ [0,1], expert type θ (at equilibrium) sends a message sequence that
reveals his true type with probability 1 by time T̂ , and accordingly, yt (θ) = yDM(θ), ∀t � T̂ .

4. Dynamic partition equilibria

Recall from Crawford and Sobel [10] that in the one-shot strategic communication game, all
equilibria have a partitional structure: Intervals of expert types pool together to send the same
message, inducing actions which are increasing step functions of the state. Communication is
then coarse; even though the state θ takes a continuum of values, only finitely many different
actions are induced.

Equilibria with this monotonic partitional structure preclude full information revelation, even
in a dynamic setting:

Proposition 1. For all horizons T , there exist no fully revealing monotonic partition equilibria.

This follows almost immediately from Crawford and Sobel [10], whose results can be invoked
due to the fact that monotonic partition equilibria imply posterior distributions that are continu-
ous over some interval. Suppose, by contradiction, that there exists a fully revealing monotonic
partition equilibrium. Then, there is a period T̂ � T in which the last subdivision occurs, with
yt (θ) = yDM(θ) for all t � T̂ . Then, the incentive constraint at time T̂ for type θ to not mimic
θ + ε is(

1 + δ + δ2 + · · · + δT −T̂ −1)uE
(
yDM(θ), θ, b

)
�

(
1 + δ + δ2 + · · · + δT −T̂ −1)uE

(
yDM(θ + ε), θ, b

)
and similarly for type θ + ε. These conditions are equivalent to the static equilibrium conditions
in Crawford and Sobel [10], who proved that they imply that at most finitely many actions can be
induced at an equilibrium of a static game, and therefore full information revelation is impossible.

9 We follow the distributional approach of Milgrom and Weber. For a full discussion of why the formulations leads to
regular conditional distributions as posterior beliefs see footnote 2 in Crawford and Sobel [10].
10 We use the typical extension of the PBE concept for infinite state spaces: both players’ strategies must maximize their
expected payoffs after all histories, and beliefs must be Bayesian (see Eq. (7)) after all equilibrium message sequences.
Our proof of Theorem 1 is by construction, and will ensure that all payoff expressions are well-defined.
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By a similar argument (details in Appendix A), we obtain the following result:

Proposition 2. If the only equilibrium in the static game is babbling, then all monotonic partition
equilibria in the dynamic game are babbling.

Observe that any equilibrium of the one-shot game can be replicated our dynamic game,
simply by playing the static equilibrium in the first period, and letting the expert babble there-
after. The DM will then repeat his first-period action choice in all periods, and so both players’
average-per-period payoffs will equal their payoffs in the corresponding equilibrium of the one-
shot game. We call such equilibria static partition equilibria. In the dynamic game, there may
exist additional partition equilibria, in which the state space is ultimately partitioned into more
intervals. Our next example shows that this can be welfare-improving:

Example 2 (More intervals can be welfare-improving). Suppose that δE = δDM = 1, types are
uniformly distributed on [0,1] and preferences satisfy (1), with bias b = 1

12 . From the analysis
of Section 4 in Crawford and Sobel [10], it follows that the static game has only two equilibria:
a babbling equilibrium, and an equilibrium with a 2-interval partition, [0, 1

3 ] ∪ [ 1
3 ,1], inducing

actions 1
6 and 4

6 .

We look for an equilibrium with the following signaling rule:

types in [0, θ1) send message sequence A = (m1(1),m2(1)),

types in [θ1, θ2] send message sequence B = (m1(2),m2(2)),

types in (θ2,1] send message sequence C = (m1(2),m2(3)).

Thus, the interval [0,1] is partitioned into [0, θ1] ∪ [θ1,1] in the first period, and then types in
[θ1,1] subdivide further into [θ1, θ2] ∪ [θ2,1] in the second period. The second-period actions
induced are y2(1) = θ1

2 , y2(2) = θ1+θ2
2 , and y2(3) = 1+θ2

2 , and the first-period actions are y1(1) = θ1
2

and y1(2) = 1+θ1
2 . Off-path: the DM assigns probability 1 to type θ1/2 (and so chooses action

y1(1) = y2(1)) if he gets any out-of-equilibrium message in the first period, or m1(1) followed by
an out-of-equilibrium second-period message. If he gets message m1(2) followed by an off-path
second message, he assigns probability 1 to the interval [θ1, θ2], and so he chooses action y2(2).
It is then immediate that the expert cannot gain with an off-path deviation.

In period 2, type θ2 must be indifferent between the actions y2(2) and y2(3), yielding the
following indifference condition:(

θ1 + θ2

2
− θ2 − b

)2

=
(

1 + θ2

2
− θ2 − b

)2

⇒ θ2 = 1

3
+ 1

2
θ1. (2)

And in period 1, type θ1 must be indifferent between message sequences A and B:(
1 + θ1

2
− θ1 − 1

12

)2

+
(

3

4
θ1 + 1

6
− θ1 − 1

12

)2

= 2

(
θ1

2
− θ1 − 1

12

)2

.

Together with (2), this implies cutoffs θ1 = 0.2482, θ2 = 0.457 43; with this, the actions become
y1(1) = y2(1) = 0.124 1, y1(2) = 0.624 1, y2(2) = 0.352 8, and y2(3) = 0.728 7.

In our dynamic equilibrium, the expert’s (ex ante) payoff is −0.0659 and the DM’s (ex ante)
payoff is −0.052. If the most informative static equilibrium is played in both periods, payoffs
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are −0.069 to the expert, −0.055 to the DM, both strictly worse than in our dynamic monotonic
partition equilibrium.11,12

Next we present an example with a non-partitional equilibrium, in which higher expert types
do not always induce (weakly) higher first-period actions. In this example, the bias is so severe
that in a static setting, all equilibria would be babbling. We show that even in these extreme bias
situations, some information can be revealed with just two rounds. This equilibrium has the fea-
ture that the DM learns the state quite precisely when the news is either horrific or terrific, but
remains agnostic for intermediate levels. Finally we show that for a range of biases, this equilib-
rium provides higher expected payoff to both players compared to all partitional equilibria.

Example 3 (A non-partition equilibrium). Consider a two-period game where δE = δDM = 1,
types are uniformly distributed on [0,1] and preferences are given by (1). We will construct an
equilibrium with the following “piano teacher” interpretation: a child’s parent (the DM) wants
the amount of money he spends on lessons to correspond to the child’s true talent θ , whereas
the piano teacher (expert) wants to inflate this number. In our equilibrium, parents of children
who are at either the bottom or top extreme of the talent scale get the same initial message,
“you have an interesting child” (m1(1) below), and then find out in the second period whether
“interesting” means great (m2(3)) or awful (m2(1)); parents of average children are told just that
in both periods. More precisely, let the expert use the following signaling rule:

In period 1, expert types in [0, θ) ∪ (θ̄ ,1] send message m1(1), and types in [θ, θ̄ ] send mes-
sage m1(2). In period 2, types in [0, θ) send message m2(1), types in [θ, θ̄ ] send a message m2(2),
and types in (θ̄ ,1] send m2(3) (all with probability one). With this signaling rule, the optimal

actions for the DM in period 1 are y1(1) = θ2−θ̄2+1
2(θ−θ̄+1)

, y1(2) = θ+θ̄

2 ; in period 2, they are y2(1) = θ

2 ,

y2(2) = θ+θ̄

2 , y2(3) = 1+θ̄
2 . After any out-of-equilibrium first-period message, the DM assigns

equal probability to all states in [θ, θ ], and chooses action y1(2); after any out-of-equilibrium
second-period message following m1(1), the DM assigns equal probability to all types in [0, θ),
and chooses action y2(1); and after any other off-path message-sequence, the DM assigns equal
probability to types in [θ, θ], and so will choose action y2(2). It immediately follows that no
expert type can gain by sending an out-of-equilibrium message.

In order for this to be an equilibrium, type θ must be indifferent between message sequences
A ≡ (m1(1),m2(1)) and B ≡ (m1(2),m2(2)):

−
(

θ2 − θ̄2 + 1

2(θ − θ̄ + 1)
− θ − b

)2

−
(

θ

2
− θ − b

)2

= −2

(
θ + θ̄

2
− θ − b

)2

(3)

and type θ̄ must be indifferent between message sequences B and C ≡ (m1(1),m2(3)):

−
(

θ2 − θ̄2 + 1

2(θ − θ̄ + 1)
− θ̄ − b

)2

−
(

1 + θ̄

2
− θ̄ − b

)2

= −2

(
θ + θ̄

2
− θ̄ − b

)2

. (4)

11 In constructing this strategy profile, we imposed only local incentive compatibility constraints, requiring that type θ1
is indifferent in period 1 between inducing action sequence (y1(1), y2(1)) and (y1(2), y2(2)), and that type θ2 is indifferent
in period 2 between inducing actions y2(2) and y2(3) . It is routine to verify that these conditions are sufficient for global
incentive compatibility. Details are available from the authors upon request.
12 In Appendix B we present an example that demonstrate that equilibria with more partitions can be Pareto inferior to
the equilibria with fewer partitions.
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At t = 2 it must also be the case that type θ prefers m2(1) to m2(3), and the reverse for type θ̄ :

that is −(
θ

2 − θ − b)2 � −( 1+θ̄
2 − θ − b)2 and −( 1+θ̄

2 − θ̄ − b)2 � −(
θ

2 − θ̄ − b)2. The global
incentive compatibility constraints, requiring that all types θ < θ prefer sequence A to B and
that all types θ > θ prefer C to B , reduce to a requirement that the average induced action be
monotonic, which is implied by indifference constraints (3), (4).

A solution of the system of Eqs. (3) and (4) gives an equilibrium if 0 � θ < θ̄ � 1. We solved
this system numerically, and found that the highest bias for which it works is b = 0.256. Here,
the partition cutoffs in our equilibrium are given by θ = 0.0581, θ̄ = 0.9823. The corresponding
optimal actions for period 1 are y1(1) = 0.253, y1(2) = 0.52, and for period 2 they are y2(1) =
0.029, y2(2) = 0.52, y2(3) = 0.991. Note that while the first period action is non-monotonic, the
average action ȳ = y1+y2

2 is still weakly increasing in the state. Ex ante payoffs are −0.275 for
the expert, and −0.144 for the DM.

Recall that in a one-shot game with quadratic preferences, all equilibria are babbling when
b > 1

4 . Proposition 2 implies that at b = 0.256, if we restricted attention to partition equilibria,
we would again find only a babbling equilibrium, in which the DM chooses action yB = 0.5
in both periods: this yields ex-ante payoffs of −0.298 to the expert, −0.167 to the DM, strictly
worse than in our above construction.13

Our example therefore illustrates how allowing for non-partition equilibria can both increase
the amount of information revelation, and can also strictly welfare-dominate the best static equi-
librium. By pooling together the best and the worst states in period 1, the expert is willing to
reveal in period 2 whether the state is very good or very bad. It also has the following immediate
implication:

Proposition 3. When the expert’s bias b is sufficiently large, there exist non-partition equilibria
that are welfare superior to all partition equilibria.

We now move on to our first main result, showing that our dynamic setup aligns the incentives
of the expert and DM in such a way that full information revelation is possible.

5. Learning the truth when the expert is patient

When the expert is forward-looking, getting him to reveal the truth is much more complicated,
as we previewed in Section 2. In this section, we construct a fully revealing equilibrium for
the quadratic preferences specified in (1). The equilibrium works as follows: In each period,
the expert recommends an action to the DM. Initially, each action is recommended by finitely
many (at most four) expert types, who then subdivide themselves further into separable groups
of two with an interim recommendation. If the DM chooses all initial actions recommended by
the expert, then the expert rewards him by revealing the truth in the final stage of the game,
recommending an action y(θ) = θ . If the DM rejects the expert’s early advice, then the expert
babbles for the rest of the game, and so the DM never learns more than the separable group
containing the truth.

13 This construction yields strictly higher payoffs compared to best monotonic partition equilibrium for all b ∈
(0.25,0.256].
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Fig. 1. Timeline.

We provide here a sketch our construction; this is followed by the statement and discussion of
our main result, with full proof details in Appendix C.

5.1. Outline

To simplify notation, we rescale the state space by dividing all actions and types by the bias b.
We also use the term disutility to mean the negative of the utility function. So, when we say that
type θ ∈ [0, 1

b
] recommends an action a and earns disutility (a − θ − 1)2, we mean that in the

original state space, type θb ∈ [0,1] recommends action ab and earns disutility (ab−θb−b)2 =
b2(a − θ − 1)2.

We first partition the scaled type space [0, 1
b
] into four intervals, with endpoints 0, θ1, θ2, θ3,

1
b

.
The separable groups are as follows: at time t = 0, each type θ ∈ [0, θ1] pools with a partner
g(θ) ∈ [θ2, θ3] to send a sequence of recommendations (u1(θ), u2(θ)), and then reveal the truth
at time t = 2 iff the DM followed both initial recommendations. Each type θ ∈ [θ1, θ2] initially
pools with a partner h(θ) ∈ [θ3,

1
b
] to recommend a sequence (v1(θ), v2(θ)), then revealing the

truth at time T − τ (τ < T − 2 a time parameter to be determined) iff the expert followed their
advice.14 For the purpose of this outline, take the endpoints θ1, θ2, θ3 as given, along with the
partner functions g : [0, θ1] → [θ2, θ3]; h : [θ1, θ2] → [θ3,

1
b
], and recommendation functions

u1, u2, v1, v2. In Appendices A–C, we construct the equilibrium parameters and functions.
For notational purposes it is useful to further subdivide the expert types into three groups: I ,

II, and III. Group I consists of types θI ∈ [θ1, θ2] with their partners h(θI ) ∈ [θ3,
1
b
]. Group II

consists of all types θ II ∈ [0, θ1] whose initial recommendation coincides with that of some
Group I pair, together with their partners g(θ II) ∈ [θ2, θ3]. Group III consists of all remain-
ing types θ III ∈ [0, θ1] and their partners g(θ III) ∈ [θ2, θ3]. In other words, we divide the types
in intervals [0, θ1] ∪ [θ2, θ3] into two groups, II and III, according to whether or not their initial
messages coincide with those of some group I pair.

The timeline of the expert’s advice is as shown in Fig. 1 where 0 < α0 � αa < 1 are spec-
ified in Appendices A–C (see Eq. (20)). It should be noted that the times at which the DM is
instructed to change his action (2α0,2αa,T − τ) are not necessarily integers in our construc-
tion. In a continuous-time setting, this clearly poses no problem; in discrete time, we can deal
with integer constraints via public randomization and/or scaling up the horizon, as explained in
Appendix C.4.

In words: in Phase 1, separable groups are formed. Each expert pair (θI , h(θI )) recommends
v1(θ

I ), and each pair (θ i, g(θ i)) (with i = 2,3) recommends an action u1(θ
i). These initial

recommendations overlap: for all θI ∈ [θ1, θ2], there exists θ II ∈ [0, θ1] with v1(θ
I ) = u1(θ

II).

14 Note that u1, u2, v1, v2 are functions of θ , and that in our construction, the expert’s messages (“recommendations”)
are equal to the actions that he wants the decision-maker to take. The DM can then infer the expert’s separable group
from his recommendation.
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Therefore, the DM’s information set contains four types {θI , h(θI ), θ II, g(θ II)} after any equi-
librium message sent by a group I or II pair, and two types, {θ III, g(θ III)}, following all initial
recommendations sent by Group III pairs. In Phase 2 of the timeline, beginning at time t = 2α0,
all pairs (θI , h(θI )) switch to the recommendation function v2(·), thus separating out from any
Group II pairs (θ II, g(θ II)) who sent the same initial message. At this point, the DM’s informa-
tion set contains at most two types.15 In Phase 3, beginning at time 2αa � 2α0, Group II and
III pairs switch to the recommendation function u2(·); this conveys no new information to the
DM, but we need at least two distinct pre-separation actions in order to provide the expert with
appropriate incentives for eventually revealing the truth. During these phases, the DM is able to
infer the separable group containing the expert’s true type, but, rather than choosing the corre-
sponding myopically optimal action, he chooses the actions recommended by the expert. These
expert recommendations, in turn, were chosen to provide the expert with incentives to join the
right separable group at time 0. Finally, Phases 4 and 5 are the revelation phases: the separable
groups themselves separate, revealing the exact truth to the DM, provided that he has followed
all of the expert’s previous advice. If the DM ever fails to choose a recommended action, then
the expert babbles during the revelation phase.

Incentivizing the expert. We now briefly explain the construction of the functions (u1, u2) and
(v1, v2), and the corresponding partner functions g,h. For the expert, three sets of constraints
must be satisfied.

The first set of constraints can be thought of as local incentive compatibility constraints –
that is, those applying within each type θ ’s interval [θi, θi+1]. These (dynamic) constraints en-
sure that, say, the agent θ ∈ [0, θ1] prefers to induce actions u1(θ) (for 2αa periods), u2(θ) (for
2(1 − αa) periods), and then reveal his type θ for the final T − 2 periods, than e.g. to follow the
sequence (u1(θ

′), u2(θ
′), θ ′) prescribed for some other type θ ′ in the same interval [0, θ1] (and

analogously within each of the other three intervals). For types θ ∈ [0, θ1], this boils down to a
requirement that u1, u2 satisfy the following differential equation,

2αau
′
1(θ)

(
u1(θ) − θ − 1

) + 2(1 − αa)u
′
2(θ)

(
u2(θ) − θ − 1

) = T − 2 (5)

and that the “average” action, 2αau1(θ)+2(1−αa)u2(θ)+ (T −2)θ , be weakly increasing in θ .
Note that a longer revelation phase (that is, an increase in the RHS term (T − 2) in (5))

requires a correspondingly larger distortion in the action functions u1, u2 (they become larger
and/or steeper): if the expert anticipates a lengthy phase in which the DM’s action will match
the true state (whereas the expert’s bliss point is to the right of the truth), then it becomes more
difficult in the initial phase to provide him with incentives not to mimic the advice of types to his
right. This is why a longer horizon does not trivially imply better welfare properties.

The next set of constraints for the expert can be thought of as “global” incentive compatibility
constraints, ensuring that no expert type wishes to mimic any type in any other interval. This
turns out to impose two additional constraints: each endpoint type θ1, θ2, θ3 must be indifferent
between the two equilibrium sequences prescribed for his type, and the time-averaged action
must weakly increase at each endpoint.

The final constraint requires that each pair of types indeed be “separable”: for any pair of
types θ < θ ′ who pool together during the first three phases, it must be that type θ would rather

15 The purpose of ensuring that action functions u1, v1 overlap, so that all initial Group I messages coincide with the
recommendation sent by a Group II pair, is that it is otherwise impossible to design strategies which ultimately reveal
the true state, and which satisfy both players’ incentive constraints.
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tell the truth, in which case the DM will choose action θ , than mimic his partner θ ′, for action θ ′.
In our rescaled action and state space, this reduces to the following requirement16:

(θ − θ − 1)2 �
(
θ ′ − θ − 1

)2 ⇔ θ ′ � θ + 2. (6)

That is, each of the pairs (θI , h(θI )) and (θ i, g(θ i)) (i = II, III) must be at least 2 units apart.
It turns out to be very tricky to satisfy the global incentive compatibility constraints together

with the local constraints. It requires a minimum of two distinct actions prior to the revela-
tion phase (this is why e.g. Group III pairs must change their recommendation from u1 to u2
at time 2αa , even though doing so reveals no further information), and that the type space be
partitioned into a minimum of four intervals.17 Moreover, for any partition into four intervals,
we found only one partner function g : [0, θ1] → [θ2, θ3] that satisfied the global incentive re-
quirements at all three interval endpoints. We believe (after extensive efforts to prove otherwise)
that there is no partition which would allow for expert-incentivizing action functions which are
myopically optimal from the DM’s perspective. This is why our construction relies on trigger
strategies: the expert only reveals the truth if the DM follows all of his advice.

We graph the equilibrium actions u1, v1 in the left-most graph, the u2, v2 in the middle graph,
and the average action for b = 1

60. 885 and T = 4:

Incentivizing the DM: Suppose that the expert recommends an action u1(θ), which the DM be-
lieves could only have come from types θ, g(θ). If the DM follows the recommendation, then he
expects the expert to switch his recommendation to u2(θ) at time 2αa , and then recommend the
true state θ for the final T −2 periods. If the DM assigns probabilities pθ ,1−pθ to types θ, g(θ),
then this yields an expected disutility of

pθ

(
2αa

(
u1(θ) − θ

)2 + 2(1 − αa)
(
u2(θ) − θ

)2) + (1 − pθ)
(
2αa

(
u1(θ) − g(θ)

)2

+ 2(1 − αa)
(
u2(θ) − g(θ)

)2)
(noting that disutility in the final T − 2 periods is zero). The problem is that the initial rec-
ommendations u1(θ), u2(θ) do not coincide with the DM’s myopically optimal action, y∗(θ) ≡
pθθ + (1 − pθ)g(θ). We therefore employ trigger strategies: the expert only reveals the truth in
the final stage if the DM follows his recommendations at the beginning of the game. If the DM

16 The LHS is type θ ’s per-period disutility from inducing action θ , and the RHS is the per-period disutility from
action θ ′ . The constraint for type θ ′ to not mimic θ is immediate from θ ′ > θ and (1).
17 This is explained briefly in our derivation of the equilibrium strategies, provided in an online appendix. Essentially, we
first show that a partition into just two intervals makes it impossible to construct (total) payoff functions which incentivize
the expert to follow a truthful strategy; necessarily, either a local or global IC constraint would be violated. Then, we
show that the desired total payoff functions cannot be achieved with just one action; with two, we can manipulate both
the variance and the expectation of the equilibrium actions.
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ever rejects his advice, then the expert babbles for the rest of the game, and so the DM’s disutility
is at best

T · [pθ · (pθθ + (1 − pθ)g(θ) − θ
)2 + (1 − pθ) · (pθθ + (1 − pθ)g(θ) − g(θ)

)2]
.

So, for the equilibrium to work for the DM, we need to make sure that the benefit to learning
the exact state, rather than just the separable group containing it, is large enough to compensate
him for the cost of following the expert’s initial recommendations, rather than deviating to the
myopically optimal actions. This is what limits the priors for which our construction works, and
imposes the upper bound b ∼= 1

61 on the bias. The construction works for the expert ∀b < 1
16 (see

footnote 28 in Appendix C.2).

Beliefs: After each expert recommendation, the DM calculates his posteriors using Bayes’ rule.
However, this requires some care in our model, since we are explicitly looking for an equilibrium
in which finite sets of types pool together (while the prior can be described by a density over the
state space [0,1]), and so the DM’s information sets all contain measure-zero sets of types.
If there is an interval I ⊂ [0,1], a continuous message function m : I → R, and a continuous
partner function p : I → ([0,1]\I ) with the property for all x ∈ I , types x and p(x) pool together
to send the message m ≡ m(x) = m(p(x)), then Bayes’ rule implies that the DM’s beliefs satisfy

Pr(x|m)

Pr(p(x)|m)
= lim

ε→0

Pr(θ ∈ [x − ε, x + ε])
Pr(θ ∈ [p(x − ε),p(x + ε)]) = f (x)

f (p(x))
· 1

|p′(x)| (7)

where f is the density associated with the DM’s prior over the state space. This says that the
likelihood of type x relative to p(x) is equal to the unconditional likelihood ratio (determined
by the prior), times a term which depends on the shape of the p-function, in particular due to
its influence on the size of the interval of partner types p(x) (for all x ∈ I ) compared to the
interval I .

5.2. Main result

Theorem 1. Suppose that δE = δDM = 1 and that the preferences of the expert and of the DM
are given by (1). For any bias b � 1

61 , there is an open set of priors F ,18 and a horizon T ∗, for
which a fully revealing equilibrium exists whenever T � T ∗.

Substantively, this theorem establishes an unexpected finding: even with a forward-looking
expert and an infinite state space, there are equilibria in which the truth is revealed in finite time.
We initially expected to prove the opposite result. Technically, the construction involves several
innovative ideas that we expect to be useful in analyzing many dynamic games with persistent
asymmetric information.

In our construction, the true state is revealed at either time 2 or time T − τ , where T − τ can
be chosen to be at most 5 (see (14)). Thus, the DM chooses his best possible action, equal to the
true state, in all but the first few periods. It is tempting to conclude that a long horizon means our
equilibrium approaches the complete-information one, but unfortunately this is not true when
the DM and expert are equally patient. A long horizon also makes it difficult to incentivize the

18 This is slightly strengthened from previous versions of the paper, which claimed only an infinite (rather than open)
set of priors.



320 M. Golosov et al. / Journal of Economic Theory 151 (2014) 304–341
expert, requiring a proportionally larger distortion in the initial recommendation functions, and
thereby imposing a proportionally larger cost to the DM (from having to follow such bad early
advice in order to learn the truth).

It is true, however, that there is an equilibrium with close to the full-information payoffs if
the horizon is sufficiently long, and if the DM is sufficiently patient compared to the expert.
Moreover, for the priors and biases covered by Theorem 1, our construction can be modified (via
a trivial rescaling of the timeline) to yield a fully revealing equilibrium for any pair of discount
factors, so long as the DM is at least as patient as the expert. This is easiest to describe if we as-
sume that the expert can revise his recommendation at any point in time. Letting rE, rDM denote
the continuous-time discount rates for the expert and the DM (and interpreting the preferences
in (1) as flow payoffs), leave all specifications from the proof of Theorem 1 unchanged, except
for the timeline shown in Fig. 1: now, let Group I pairs recommend v1 up to time t1(α0), then v2

up to time t4, and then reveal the truth, and let Group II, III pairs now recommend u1 up to time
t2(αa), u2 up to time t3, then reveal the truth, where

t1(α0) = ln(1 − 2φα0r
E)

−rE
, t2(αa) = ln(1 − 2φαar

E)

−rE
,

t3 = ln(1 − 2φrE)

−rE
, t4 = ln(1 − (T − τ)φrE)

−rE
(8)

with φ = 1−e−rE T̂

T rE , T̂ is the (freely specified) horizon, and the T is the horizon used in our original
construction.

By construction, this modification multiplies all expected payoffs from our original construc-
tion by a constant, φ. It can further be shown that the DM’s incentive constraints are relaxed as he
grows more patient – intuitively, his incentives to follow the expert’s recommendations grow as
he puts more weight on learning the truth in the future – and so we obtain a fully revealing equi-
librium whenever the DM is more patient than the expert. As T̂ → ∞ and rDM → 0, the times
in (8) remain finite, and so the DM (by following the expert’s advice) ends up knowing the truth
in all but the early stages of a very long game. He will then find it optimal to follow the expert’s
advice for nearly all priors over the state space, and earns (asymptotically) his full-information
payoffs.19

6. Concluding remarks

This paper shows that dynamic strategic communication differs from its static counterpart.
Our most striking result is that fully revealing equilibria exist. The equilibria are admittedly
complex, and we do not suggest that they resemble any communication schemes currently in
practice. This was not our goal; rather, we wished to determine whether it is possible for a DM to
design a questions-and-incentives scheme to elicit the precise truth out of a biased expert, such
that the expert would be willing to follow the proposed scheme. Our construction proves that it is

19 This result was formally included in the previous version of the paper. Specifically, we found that for any bias b < 1
16

(compared to the cutoff b < 1
61 required in this paper for equal discount rates), any fixed expert discount rate rE > 0,

and any prior with densities that are everywhere bounded away from zero and infinity, one can choose a horizon long
enough, and rDM sufficiently close to zero, that the proposed strategies constitute a fully revealing equilibrium.
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indeed possible, explains exactly how to do so when the expert has quadratic-loss preferences20

and the true state is constant over time,21 and highlights the conditions under which he would
indeed desire to do so. In particular, the proposed communication scheme would benefit the DM
if he is either more patient than the expert, or if final decisions are relatively more important for
the decision-maker compared to earlier ones.

The main novel ingredient of our model is that there are multiple rounds of communication,
with a new action chosen after each round. The dynamic incentive considerations for the expert
allow us to group together types that are far apart, forming “separable groups”, which is the
key to obtaining greater information revelation. Our dynamic setup also allows for future com-
munication to be conditioned on past actions (trigger strategies), and we show how information
revelation can be facilitated through this channel.

The forces that we identify may be present in many dynamic environments with asymmetric
information and limited commitment. In these models as well, past behavior sets the stage for
future behavior. And, in contrast to the vast majority of the recent literature on dynamic mech-
anism design,22 one needs to worry about both global and local incentive constraints, even with
simple stage payoffs that satisfy the single-crossing property.

Lastly, given the important insights from cheap talk literature which have been widely applied
in both economics and political science, we hope and expect that the novel aspects of strategic
communication emphasized in our analysis will shed light on many interesting dynamic prob-
lems.

Appendix A. Proof of Proposition 2

When we restrict attention to monotonic partition equilibria, there will be some point in the
game at which the last subdivision of an interval occurs, say period T̂ � T . Assume that some
interval is partitioned into two, inducing actions y1 and y2, and let θ̂ be the expert type who is
indifferent between y1, y2. Since no subdivision occurs after period T̂ , it follows that type θ̂ ’s
indifference condition in period T̂ is(

1 + δ + · · · + δT −T̂ −1)uE(y1, θ̂ , b) �
(
1 + δ + · · · + δT −T̂ −1)uE(y2, θ̂ , b),

which reduces to the static indifference condition. But then, if this subdivision is possible, it
cannot be the case that all static equilibria are equivalent to babbling equilibria. This follows by
Corollary 1 of Crawford and Sobel [10].

Observe that all the arguments in this proof go through even if we allow for trigger strategies.
This is because at the point where the last subdivision occurs, it is impossible to incentivize the
DM to choose anything other than his myopic best response: he knows that no further information

20 It would be interesting to understand more generally the types of expert preferences for which this is possible, but
this is beyond the scope of the current paper. The general question is difficult to analyze, given the large class of possible
equilibrium structures.
21 One could presumably apply our construction in a model where the state evolves slowly over time, for example by
restricting how frequently the expert can observe state changes, and playing our equilibrium within each “block” between
state observations. If the probability of a state change between observations is small, this would lead to an equilibrium
where the DM knows the true state most of the time.
22 In recent years, motivated by the large number of important applications, there has been substantial work on dynamic
mechanism design. See, for example, the survey of Bergemann and Said [7] and the references therein, or Pavan, Segal,
and Toikka [24].
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will be revealed, and so he knows that he cannot be rewarded in the future for choosing a subop-
timal action now. So, the above argument applies.

Appendix B. Example 4: more partitions can reduce welfare

The following example demonstrates that equilibria with more partitions can be Pareto inferior
to the equilibria with fewer partitions.

Take δE = δDM = 1 and b = 0.08, with the state θ drawn from a uniform distribution on [0,1].
Consider the most informative static partition equilibrium where the number of partitions is
p = 3. At this equilibrium the state space is divided into [0,0.013], [0.013,0.347] and [0.347,1].
The corresponding optimal actions of the DM are given by

y1 = 0.0067, y2 = 0.18, y3 = 0.673

from which we can calculate the ex-ante expected utility levels for the expert −0.0325 and for
the DM −0.0263. Then, at the equilibrium of the dynamic game where the most informative
static equilibrium is played at t = 1 and babbling thereafter, the total expected utility is −0.065
for the expert, and −0.053 for the DM.

We now construct a dynamic equilibrium where the type space is subdivided into more subin-
tervals, but both players’ ex-ante expected payoffs are lower. We look for an equilibrium with the
following signaling rule: types in [0, θ1] send message sequence (m1(1),m2(1)), types in (θ1, θ2]
send message sequence (m1(2),m2(2)), types in (θ2, θ3] send message sequence (m1(2),m2(3)),
and types in (θ3,1] send message sequence (m1(3),m2(4)). So types are partitioned into four
intervals in stage 2, but in stage 1, the types in [θ1, θ2] and [θ2, θ3] pool together to send the
same message m1(2). Since the signaling rule does not depend on the DM’s action at stage 1,
the DM will choose the following myopically optimal actions: y1(1) = y2(1) = θ1

2 , y1(2) = θ1+θ3
2 ,

y2(2) = θ1+θ2
2 , y2(3) = θ2+θ3

2 , and y1(3) = y2(4) = 1+θ3
2 . After any out-of-equilibrium first-period

message, the DM assigns probability one to the interval [0, θ1], and chooses action y1(1). After
any out-of-equilibrium second-period message following initial message m1(1) or m1(3), the DM
maintains his first-period beliefs, choosing (respectively) m2(1) or m2(4). After any other out-of-
equilibrium sequence of messages, the DM assigns probability one to the interval [θ1, θ2], and
chooses m2(2). With these out-of-equilibrium beliefs it is immediate to see that no type has an
incentive to deviate.

At equilibrium, type θ1 is indifferent between action sequences (y1(1), y2(1)) and (y1(2), y2(2)),
type θ2 is indifferent between 2nd-period actions y2(2) and y2(3), and type θ3 is indifferent be-
tween action sequences (y1(2), y2(3)) and (y1(3), y2(4)). Therefore, equilibrium cutoffs are the
solution to the following system of equations23:

2

(
θ1

2
− θ1 − b

)2

−
(

θ1 + θ3

2
− b − θ1

)2

−
(

θ1 + θ2

2
− b − θ1

)2

= 0,(
θ1 + θ2

2
− b − θ2

)2

−
(

θ2 + θ3

2
− b − θ2

)2

= 0,

2

(
1 + θ3

2
− b − θ3

)2

−
(

θ1 + θ3

2
− b − θ3

)2

−
(

θ2 + θ3

2
− b − θ3

)2

= 0.

23 It is trivial to check exactly as we did in previous examples that these indifference conditions suffice for global
incentive compatibility.
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At b = 0.08, the only solution that gives numbers in [0,1] is θ1 = 0.0056, θ2 = 0.015,
θ3 = 0.345, and the actions induced for t = 1 and for t = 2 are respectively given by y1(1) =
y2(1) = 0.00278, y1(2) = 0.175, y2(2) = 0.0105, y2(3) = 0.18 and y1(3) = y2(4) = 0.673. This im-
plies ex-ante expected utility −0.066 for the expert and −0.053 for the DM. Thus, although the
interval is subdivided into more subintervals here, both players are strictly worse off than when
the best static equilibrium is played in the first period, with players babbling thereafter. This
feature is also illustrated in Example 1 of Blume, Board, and Kawamura [8].

Appendix C. Proof of Theorem 1

For brevity of exposition, we will prove Theorem 1 via the “guess-and-verify” method: Ap-
pendix C.1 gives the proposed strategies, Appendix C.2 proves that they are optimal from the
expert’s perspective, Appendix C.3 constructs an open set of priors for which the DM likewise
finds it optimal to follow the proposed strategy. We provide the details behind the equilibrium
construction in an online appendix. Additionally, for ease of exposition, we assume in Appen-
dices C.1–C.3 that time is continuous, so that messages may be sent and actions may be changed
at any point in time. We explain at the end of Appendix C.4 how to modify our timeline for
discrete time.

The precise details of our construction differ depending on whether the bias is above or be-
low 1

320 . We provide here the strategies for both cases, but defer some details for the case b < 1
320

to the online appendix.

C.1. Preliminaries: strategies, timeline, parametrizations

Type parametrizations: For any bias b < 1
61 , partition the (scaled) state space [0, 1

b
] into four in-

tervals, [0, θ1)∪[θ1, θ2]∪ (θ2, θ3)∪[θ3,
1
b
], with endpoints θ1, θ2, θ3 determined by b as follows:

first define a parameter ab < 024 by(
ab − 2 + 2e−ab

)
e2 − ab = 1

b
(9)

and then set

θ3 = 1

b
+ ab, θ2 = θ3 − 2, θ1 = θ2 − θ3e

−2. (10)

We describe the types in these four intervals parametrically, via functions x : [−2,0] → [0, θ1],
g : [−2,0] → [θ2, θ3], z : [ab,0] → [θ1, θ2], and h : [ab,0] → [θ3,

1
b
] given by25

x(a) = θ3 + a − θ3e
a, g(a) = θ3 + a,

z(a) = 1

b
+ a − 2ea−ab , h(a) = 1

b
+ a. (11)

Timeline: The timeline involves the following parameters: a horizon T , a time 2 < τ < T , and
a continuous, weakly decreasing function α : [−2,0] → (0,1); in a slight abuse of notation, we

24 A straightforward calculation shows that the LHS expression in (9) is strictly decreasing in ab , and equal to zero at
ab = 0; thus, (9) indeed defines a unique value ab < 0 for any b > 0.
25 Observe that x and z are strictly decreasing in a, while h and g are strictly increasing in a, with (by (9) and (10))
x(0) = 0, x(−2) = θ1 = z(0), z(ab) = θ2 = g(−2), and g(0) = θ3 = h(ab).
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define αa ≡ α(a), ∀a ∈ [−2,0]. The pair of expert types (x(a), g(a)) switches from u1 to u2 at
time 2αa , then reveals the truth at time 2; all pairs (z(a), h(a)) switch from v1 to v2 at time 2α0,
and then reveal the truth at time τ . Importantly, for the case 1

320 < b < 1
61 we focus on here,

the function α is constant, with αa = α0 for all α ∈ [−2,0]. The time T − τ at which pairs
(z(a), h(a)) reveal the truth is determined by the horizon as follows:

τ

T − 2
= β ≡ (θ2 − θ1)(θ2 − θ1 − 2)

(θ4 − θ1)(θ4 − θ1 − 2)
(12)

= (ab − 2 + 2e−ab )(ab − 4 + 2e−ab )

2e−ab (2e−ab − 2)
by (10) and (11) (13)

and our proofs for the DM require a horizon T ∈ [T ,T ], where26,27

T =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
7 if β ∈ [0.4173,0.50102),
5−2β
1−β

if β ∈ [0.50102,0.79202),

5. 474 8β
2.7374β−1.7374 if β ∈ [0.79202,0.95203),

6 if β � 0.95203,

T =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

7 if β ∈ [0.4173,0.50102),
8−2β
1−β

if β ∈ [0.50102,0.79202),

4−2β
1−β

if β ∈ [0.79202,0.90913),

12. 005β
6.0025β−5.0025 if β � 0.90913.

(14)

Expert’s strategy (on-path): The expert’s strategy along the equilibrium path is as follows: each
expert pair (x(a), g(a)) with a ∈ (−2,0] (covering all types in [0, θ1) ∪ (θ2, θ3]) recommends
an action u1(a) at time zero, then switches the recommendation to u2(a) at time 2αa , and then
reveals the true state at time 2, where

u1(a) = θ3 + K − T − 2

2
a −

√
1 − αa

αa

√
1 − α0

α0
K2 + (T − 2)a

(
K − T

4
a

)
, (15)

u2(a) = θ3 + K − T − 2

2
a +

√
αa

1 − αa

√
1 − α0

α0
K2 + (T − 2)a

(
K − T

4
a

)
(16)

and

K =
α0τab(1 +

√
(T −2α0)(T −τ)

2τα0
)

(T − τ − 2α0)
. (17)

26 The upper limit on T (relative to our normalization that Group II, III pairs reveal the truth at time 2) arises for the
reasons explained following Eq. (7): a longer horizon makes it more difficult to provide the expert with incentives to
reveal the truth, implying that the initial actions must be distorted further away from those which are myopically optimal
for the DM. Throughout most of the state space, the DM’s IC constrains are nonetheless relaxed as T increases; however,
for the closest-together pooled expert pairs (e.g. (θ2, θ3), separated by only 2b units), knowing the exact state for a larger
fraction of the game does not compensate for this distortion, and the DM will deviate to the myopically optimal action if
T is too large.
27 For future reference, note from (13) that βa2

b
� 8 ⇔ ab �−3.18 ⇔ β � 0.79202, and that in this range, (14) specifies

T � 4−2β
1−β

; using (12), this implies T − τ � 4. In the range ab ∈ [−2,−3.18) ⇔ β ∈ [0.50102,0.79202), (14) implies

that T − τ ∈ [5,8], noting from (12) that T = T −τ−2β .
1−β
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All expert pairs (z(a), h(a)) with a ∈ [ab,0] except for type h(ab) = θ3 (covering all expert
types in [θ1, θ2] ∪ (θ3,

1
b
]) recommend v1(a) at time zero, switch their recommendation to v2(a)

at time 2α0, and then reveal the truth at time τ , where

v1(a) = θ3 + 2K − τ(a − ab)

T − τ

−
√

τ(T −τ−2α0)
α0

√
(
T −τ−2α0

τα0
)K2 + 2K(a − ab) − T

2 (a − ab)2

T − τ
, (18)

v2(a) = θ3 + 2K − τ(a − ab)

T − τ

+
√

4τα0
T −τ−2α0

√
(
T −τ−2α0

τα0
)K2 + 2K(a − ab) − T

2 (a − ab)2

T − τ
. (19)

Note that type θ2 = z(ab) is missing his “partner” h(ab), as we have specified that type θ3 =
g(0) = h(ab) follow the strategy prescribed for type g(0) rather than the one that would be
prescribed for type h(ab). This will not pose any problem for the DM, due to the fact that the two
strategies, by construction, are identical.28

Expert’s strategy (off-path): If the DM ever deviates, by choosing a different action than the
one recommended by the expert, then (i) if the expert himself has not previously deviated, he
subsequently babbles; (ii) if the expert has observably deviated in the past, he subsequently
behaves as if the deviation did not occur.

DM’s strategy and beliefs: If there have been no detectable deviations by the expert, then fol-
low all recommendations, using Bayes’ rule to assign beliefs at each information set. Following
deviations: (i) If the expert observably deviates at time 0 (sending an off-path initial recommenda-
tion), subsequently adopt the strategy/beliefs that would follow if the expert had instead sent the
recommendation u1(0) prescribed for types {x(0), g(0)}; (ii) If the expert observably deviates
on his 2nd recommendation, ignore it as an error, and subsequently adopt the strategy/beliefs
that would follow had the deviation not occurred; (iii) If the expert deviates observably in the
revelation phase, ignore it as an error, assigning probability 1 to the lowest type in the current
information set; (iv) If the DM himself deviates, rejecting some expert recommendation, he sub-
sequently maintains his current (time of deviation) beliefs, disregarding any expert messages as
uninformative babbling.

C.1.1. Preliminary calculations
Before proceeding with the proof that these strategies indeed constitute a fully revealing equi-

librium, we construct a function α(·) with the following properties:

28 Type h(ab) would recommend v1(ab) initially, v2(ab) at time 2α0, and then the truth, θ3, at time T − τ , and by (18)

and (19), we have v1(ab) = θ3 + K
α0

, v2(ab) = θ3; on the other hand, type g(0) would recommend u1(0) initially, then

u2(0) at time 2α0, and then θ3 at time 2, and by (15) and (16), we have u1(0) = θ3 + K
α0

, u2(0) = θ3. So with either

specification, type θ3 recommends θ3 + K for the first 2α0 periods, and θ3 from then on.
α0
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(i) if βa2
b � 8, then α(·) is constant, with α(a) = α0,∀a ∈ [−2,0], and α0 near 1,

(ii) if βa2
b > 8, then α(·) is continuous and strictly decreasing, with

α(0) ≡ α0 near 0,

(iii) u1, u2, v1, v2 are real-valued, and ∀a ∈ [ab,0], ∃a′ ∈ [−2,0] with

v1(a) = u1(a
′).

(20)

Lemmas A and B below prove that if βa2
b � 8, then there is a cutoff α0 < 1 such that if α is

constant, with α(a) = α0 ∈ (α0,1), then property (iii) of (20) is satisfied. We provide details for
the case βa2

b > 8 in the online appendix.

Lemma A (Expert’s recommended actions are real-valued). Let βa2
b � 8, and set αa = α0, ∀a ∈

[−2,0]. There exists 0 < α0 < 1 such that the action functions uj , vj specified in (15)–(19) are
real-valued whenever α0 > α0.

Proof. For vj (·), we need to prove that the following expression is non-negative for all a ∈
[ab,0]:(

T − τ − 2α0

τ

)
K2

α0
+ 2K(a − ab) − T

2
(a − ab)

2. (21)

Since this expression is strictly decreasing in a (noting from (17) that K < 0), it is sufficient to
prove that the minimum value, at a = 0, is non-negative. But this is true by construction: the value

of K specified in (17) is precisely the negative root of the equation (
T −τ−2α0

τ
)K2

α0
−2Kab − T

2 a2
b .

For uj (·) we need to prove that the following expression is non-negative ∀a ∈ [−2,0]:
1 − α0

α0
K2 + (T − 2)a

(
K − T

4
a

)
. (22)

This expression is strictly concave (the second derivative w.r.t. a is −T (T −2)
2 ), hence minimized

at one of the endpoints of the interval [−2,0]. At a = 0, it is trivially non-negative, and so we
need only show that it is non-negative at a = −2, requiring:

1 − α0

α0
K2 − (T − 2)(2K + T )� 0. (23)

For this, it suffices (by continuity in α0) to show that limα0→1(2K + T ) < 0. But by (17) and the
first expression in (12),(

1 − β

2β

)
lim

α0→1
(2K + T ) = ab

(
1 +

√
T − τ

2β

)
+ T − τ

2β
− 1.

This is negative for all
√

T −τ
2β

< 1 − ab, which is implied by (14): If β ∈ [0.4172,0.50102], then

1 − ab > 2.772 6, while
√

T −τ
2β

�
√

7−5(0.4172)
2(0.4172)

= 2.426 8; and if β ∈ [0.50102,0.79202], then

1 − ab > 3, while T − τ � 8 and β > 0.50102 imply
√

T −τ
2β

�
√

8
2(0.50102)

< 3. �
Lemma B (Group I, II recommendations overlap). Let βa2

b � 8 and set αa = α0, ∀a ∈ [−2,0].
There exists numbers 0 < α0 < 1 such that for all α0 > α0, and for any a ∈ [ab,0], there exists
a′ ∈ [−2,0] such that v1(a) = u1(a

′).
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Proof. By (18), we have

v′′
1 (a) =

√
τ(T −τ−2α0)

α0
( K2

τα0
)( T

2 − α0)

((
T −τ−2α0

τα0
)K2 + 2K(a − ab) − T

2 (a − ab)2)
3
2

> 0,

noting from (14) that T
2 > α0, so that mina∈[ab,0] v′

1(a) = v′
1(ab) = 0. Therefore v1 is strictly

increasing, with range (using (18))

a ∈ [ab,0] ⇒ v1(a) ∈ [
v1(ab), v1(0)

] =
[
θ3 + K

α0
, θ3 + 2K + τab

T − τ

]
. (24)

By (15) evaluated at a = 0, we have u1(0) = θ3 + K
α0

, precisely the minimum value of v1(·)
by (24). It remains to prove that for α0 sufficiently near 1, u1(−2) exceeds the maximum value
of v1(a). Evaluating (15) at a = −2 and taking limits,

lim
α0→1

(
u1(−2) −

(
θ3 + 2K + τab

T − τ

))
= lim

α0→1

(
K + T − 2 − 2K + τab

T − τ

)

= (T − 2)

(
1 −

√
βa2

b

2(T − τ)

)
by (12), (17).

Since βa2
b � 8, and T − τ � 4 in this range by (14), we have

βa2
b

2(T −τ)
< 1, thus the expression is

strictly positive, as desired. �
C.2. Optimality for the expert

Proposition C1 (Expert optimality: off-path behavior). The expert has no incentive to choose an
off-path recommendation sequence.

Proof. Immediate from the DM strategy and beliefs specified in Appendix C.1: a deviation at
time zero is equivalent to mimicking type x(0), deviations between time t = 0 and the revelation
phase are ignored (the DM behaves as if he had instead received the anticipated recommendation
sequence), and a deviation in the revelation phase is equivalent to mimicking the lowest type in
the DM’s current information set. �
Proposition C2 (Expert optimality: truth revelation phase). In the prescribed revelation phase,
(i) if there have been no previous deviations by the DM, then the expert finds it optimal to reveal
the truth; (ii) if the DM has ever deviated, then the expert finds it optimal to babble (e.g. by
repeating his last recommendation).

Proof. Part (ii) follows from Appendix C.1 specification that if the DM himself ever deviates,
then he will subsequently choose whichever action was myopically optimal at the time of devia-
tion. The expert therefore cannot influence the DM’s behavior, and so babbling (in particular)
is optimal. For part (i): by (6), we just need to make sure that all pairs (x(a), g(a)), along
with all pairs (z(a), h(a)), are separated by at least 2 units. By (10), mina∈[a ,0] |h(a) − z(a)| =
b
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θ3 − θ2 = 2; and by (10) and (11), mina∈[−2,0] |g(a) − x(a)| = ab − 2 + 2e−ab , which exceeds 2
whenever ab < −0.895 ⇔ b < 1

15.76 .29 �
It remains to show that each type θ ∈ [0, 1

b
] would rather send the message sequence des-

ignated for his type, than mimic the sequence of any other type θ �= θ ′ ∈ [0, 1
b
]. Through-

out this section, we refer to our four intervals [0, θ1), [θ1, θ2], (θ2, θ3], (θ3,
1
b
] as (respectively)

I1, I2, I3, I4, and define I (θ) ∈ {I1, I2, I3, I4} as the interval containing type θ . Let D(θ ′|θ) de-
note the disutility to type θ ∈ [0, 1

b
] from following the strategy prescribed for type θ ′ ∈ [0, 1

b
]

(recalling that we defined disutility as the negative of the payoff, so the expert’s goal is to
minimize disutility). We also define D(θ+

i |θ) ≡ limθ ′↓θ+
i

D(θ ′|θ) as the limit of D(θ ′|θ) as θ ′

approaches θi from the right, and D(θ−
i |θ) ≡ limθ ′↑θ−

i
D(θ ′|θ) as the limit from the left, for

i = 1,2,3. We begin with two preliminary lemmas, before completing the proof in Proposi-
tion C3.

Lemma C3.1 (Expert optimality: local IC). For all θ, θ ′ ∈ [0, 1
b
], D(θ ′|θ) is strictly increasing

in |θ ′ − θ | if θ ′ ∈ I1 ∪ I2, and constant if θ ′ ∈ I3 ∪ I4.

Proof. First consider type θ ’s disutility from following the strategy prescribed for a type θ ′ =
x(a) ∈ [0, θ1]. By (15) and (16),

D
(
x(a)|θ) = 2

(
θ3 + K − T − 2

2
a − θ − 1

)2

+ 2

(
1 − α0

α0
K2 + (T − 2)a

(
K − T

4
a

))
+ (T − 2)

(
x(a) − θ − 1

)2
. (25)

Differentiating with respect to x(a), using x′(a) = 1 − θ3e
a (by (11)) and simplifying,

∂D(x(a)|θ)

∂x(a)
= 2(T − 2)

(
−θ3 + a − θ − 1

x′(a)
+ (

x(a) − θ − 1
))

= 2(T − 2)

(
θ3e

a

θ3ea − 1

)(
x(a) − θ

)
. (26)

As desired, this is positive if x(a) > θ (so expert type θ ’s disutility increases – making him worse
off – if he mimics types x(a) further above him), and negative if x(a) < θ , establishing (i).

If type θ follows the strategy prescribed for type z(a) ∈ I2, then, using (18) and (19), his
disutility is given by

D
(
z(a)|θ) = 2α0

(
v1(a) − θ − 1

)2 + (T − t − 2α0)
(
v2(a) − θ − 1

)2 + τ
(
z(a) − θ − 1

)2

= τ
(
z(a) − θ − 1

)2 + (T − τ)

(
θ3 + 2K − τ(a − ab)

T − τ
− θ − 1

)2

+ 2τ

T − τ

((
T − τ − 2α0

τα0

)
K2 + 2K(a − ab) − T

2
(a − ab)

2
)

. (27)

29 This is in fact all that is needed for the construction to work for the expert, but we specify b < 1
61 in (9) to make the

construction work for the DM.
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The derivative w.r.t. z(a) is

∂D(z(a)|θ)

∂z(a)
= −2τ

(θ3 + a − ab − θ − 1)

z′(a)
+ 2τ

(
z(a) − θ − 1

)
= 4ea−ab

(
τ

2ea−ab − 1

)(
z(a) − θ

)
by (11) and (10). (28)

This is positive iff z(a) > θ , establishing that D(θ ′|θ) is strictly increasing in |θ ′ − θ | if θ ′ ∈
(θ1, θ2). Part (ii) then follows immediately.

Next, if type θ follows the strategy prescribed for g(a) ∈ [θ2, θ3], his disutility is as given
by (25), just replacing x(a) with g(a) in the final term; the derivative w.r.t. g(a) is then as
in (26), just replacing x′(a) with g′(a), and x(a) with g(a). Therefore, we have

∂D(g(a)|θ)

∂g(a)
= 2(T − 2)

(
−θ3 + a − θ − 1

g′(a)
+ g(a) − θ − 1

)
= 0 by (11), since g′(a) = 1 and g(a) = θ3 + a.

Therefore, as desired, the disutility to any type θ ∈ [0, 1
b
] from mimicking type g(a) ∈ (θ2, θ3) is

a constant, independent of the particular type g(a) chosen. And finally, type θ ’s disutility from
mimicking type θ ′ ∈ (θ3,

1
b
] is as in (27), just replacing z(a) with h(a). Using h(a) = θ4 +a, this

yields ∂D(h(a)|θ)
∂h(a)

= 0, so that D(θ ′|θ) is constant for θ ′ ∈ [θ3,
1
b
], thus proving (iii). �

Lemma C3.2 (Expert optimality: endpoints). Payoffs at the endpoints θ1, θ2, θ3 satisfy

D
(
θ−

1 |θ)
< D

(
θ+

1 |θ) ⇔ θ < θ1, (29)

D
(
θ−

2 |θ)
< D

(
θ+

2 |θ) ⇔ θ < θ2, (30)

D
(
θ−

3 |θ) = D
(
θ+

3 |θ)
, ∀θ. (31)

Proof. For (29), evaluate (27) at a = 0 to obtain an expression for D(θ+
1 |θ), and evaluate (25)

at a = −2 to obtain an expression for D(θ−
1 |θ). Subtracting, using (17) to replace (

T −τ−2α0
τα0

)K2

with 2Kab + T
2 a2

b , (12) to replace τ with (θ2−θ1)(θ2−θ1−2)
(θ4−θ1)(θ4−θ1−2)

(T − 2), and (10) to replace θ3 − ab

with θ4, this yields

D(θ−
1 |θ) − D(θ+

1 |θ)

T − 2
=

(
2(θ2 − θ1)(θ4 − θ2)

(θ4 − θ1 − 2)

)
· (θ − θ1).

This is negative iff θ < θ1, thus proving (29).
To prove (30), obtain an expression for D(θ−

2 |θ) by evaluating (27) at a = ab , and obtain an
expression for D(θ+

2 |θ) by evaluating (25) at a = −2 (this gives D(x(−2)|θ)), and then replacing
x(−2) with g(−2) = θ2. Subtract the expressions, and note that K cancels out (by construction).
Then, using τ = β(T − 2) and θ3 = θ2 + 2 (from (12) and (10)), we are left with the following
expression, negative (as desired) iff θ < θ2:

D(θ−
2 |θ) − D(θ+

2 |θ)

(T − 2)
= 4β(θ − θ2) by (11). (32)

Finally, for (31), recall from Lemma C3.1 that D(g(0)|θ) = D(g(−2)|θ), and that D(h(ab)|θ)

equals D(z(ab)|θ) + τ(θ3 − θ2)(θ2 + θ3 − 2θ − 2). Subtracting,
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D
(
θ−

3 |θ) − D
(
θ+

3 |θ) = D
(
g(−2)|θ) − D

(
z(ab)|θ

) − τ(θ3 − θ2)(θ2 + θ3 − 2θ − 2)

= 4τ(θ2 − θ) − τ(θ3 − θ2)(θ2 + θ3 − 2θ − 2) by (32), (12).

By (10) this reduces to zero, as desired to establish that all types θ ∈ [0, 1
b
] are indifferent between

the strategies prescribed for types g(0), h(ab). �
Proposition C3 (Expert optimality: global IC). For all θ ∈ [0, 1

b
], the disutility to expert type θ

from following the strategy prescribed for type θ ′ ∈ [0, 1
b
] is minimized at the truth, θ ′ = θ .

Proof. This is almost immediate from Lemmas C3.1 and C3.2, which established that type θ ’s
disutility from mimicking any type θ ′ is increasing in |θ ′ − θ |, and thus minimized (so util-
ity is maximized) by following the truthful strategy. Consider, in particular, a type θ ∈ I2.
By Lemma C3.1, truth-telling is better than mimicking any other type θ ′ ∈ I2, and so in par-
ticular, earns a disutility which is weakly below both D(θ+

1 |θ) and D(θ−
2 |θ) (the disutilities

from following the strategies at the left and right endpoints of interval I2). By (29), our type
θ ∈ [θ1, θ2] prefers the strategy at the left endpoint of I2 to the one at the one at the right
endpoint of I1, which in turn is preferred to the strategy of any other type in I1; that is,
D(θ |θ) � D(θ+

1 |θ) < D(θ−
1 |θ) = minθ ′∈I1 D(θ ′|θ), and so type θ will not mimic any type

θ ′ ∈ I1. And (30), our type θ ∈ I2 prefers the strategy at the right endpoint of I2 to the one
at the left endpoint of I3, which, by Lemma C3.1 and (31) yields the same disutility as mimick-
ing any other type θ ′ ∈ I3 ∪ I4; therefore, mimicking such a type is not optimal. Altogether, this
establishes that type θ2 would rather follow the truthful strategy than mimic any other type.

The proofs for the remaining three intervals are nearly identical. �
C.3. Optimality for the DM

Throughout this section, assume that the expert’s strategy is as specified in Appendix C.1,
with α0 chosen according to (20). The DM’s off-path strategies and beliefs (specified in Ap-
pendix C.1) trivially satisfy all PBE requirements. Therefore, we need only prove that along the
equilibrium path, for some open set of priors over the state space, a Bayesian DM will find it
optimal to follow all of the expert’s recommended actions.

First, some notation. Let [vmin
j , vmax

j ], [umin
j , umax

j ] (j = 1,2) denote the ranges of the func-

tions uj , vj . By property (20), we have vmin
1 = umin

1 , and vmax
1 � umax

1 . Therefore, if the DM
receives an initial recommendation v1(a) ∈ [vmin

1 , vmax
1 ], he believes that it was sent by a type

in {z(a),h(a), x(a′), g(a′)}, where a′ = u−1
1 (v1(a)); let (r1(a), r2(a),p1(a),p2(a)) denote the

DM’s posterior probabilities (summing to 1) on these four types in his information set, and re-
call that r2(ab) = 0.30 If the DM receives an initial recommendation u1(a) ∈ [vmax

1 , umax
1 ], his

information set contains only the pair (x(a), g(a)); let (p1(a),p2(a)) (with p1(a) + p2(a) = 1)
denote his posteriors on these two types.

The structure of the proof is as follows: Proposition C4 shows that it is sufficient to rule out
profitable deviations at times t ∈ {0,2α0,2}, to the action which is myopically optimal at time t .
Proposition C5 constructs a set of posteriors which rule out profitable deviations at t = 0, Propo-
sitions C6.1, C6.2 construct posteriors which rule out profitable deviations at times t ∈ {2α0,2},

30 The recommendation v1(ab) = u1(0) is sent only by the three types {x(0), z(ab), g(0)}; type θ3 = h(ab) = g(0)

follows the strategy prescribed for type g(0) rather than h(ab).
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and Proposition C7 proves that there is an open set of priors over the state space which generate,
as Bayesian posteriors, the beliefs required by Propositions C5, C6.1, C6.2.

Proposition C4 (Strongest incentives to deviate). If the DM cannot gain by deviating to the
myopically optimal action in any of the following three scenarios, then there are no profitable
deviations: (i) at time t = 0 after a recommendation in [umin

1 , umax
1 ]; (ii) at time t = 2α0, if the

DM does not change his recommendation, or recommends an action in [vmin
2 , vmax

2 ]; (iii) at time
t = 2, if the expert recommends θ3.

Proof. Prior to the revelation phase, types θ /∈ {0, θ2, θ3} reveal information only at times t = 0
(with the initial recommendation) and t = 2α0 (when Group I pairs separate out from any
Group II types who sent the same initial recommendation).31 Types θ ∈ {0, θ2, θ3} all pool to-
gether until time t = 2 (recommending u1(0) = v1(ab) initially, then u2(0) = v2(ab) = θ3 at
time 2α0), at which point type 0 separates out by revealing the truth. The result then follows
immediately from two observations. First, recall that the expert’s strategy is to babble until the
end of the game if the DM ever deviates. Then, at any time t > 0, the best possible deviation is
to choose the myopically optimal action (given the time t information) until the end of the game.
Second, the incentive to deviate is strongest at the earliest times that new information is revealed,
when the “reward” phase – revelation of the truth – is furthest away. As desired, this establishes
that it is sufficient to rule out profitable deviations in scenarios (i)–(iii) of the proposition. �
Proposition C5 (DM deviations at t = 0). Let βa2

b � 8. There exists a continuous function
p∗

a : [−2,0] → (0,1), numbers ε, γ > 0, and 0 < α′′ < 1 such that if the DM receives an ini-
tial recommendation u1(a) ∈ [umin

1 , umax
1 ], his gain to deviating is strictly negative whenever the

following three conditions hold: (i) α > max{α0, α
′′}, with α0 as in Lemma B; (ii) p1(a)

p1(a)+p2(a)
∈

(p∗
a − ε,p∗

a + ε), ∀a ∈ [−2,0]; (iii) for all recommendations u1(a) ∈ [vmin
1 , vmax

1 ], r1(a) +
r2(a) < γ .

Proof. Let G(u1(a)|{x(a), g(a)}) denote the DM’s expected gain from deviating to the myopi-
cally optimal action conditional on knowing θ ∈ {x(a), g(a)}. The proof proceeds in 5 steps:

Step 1. It suffices to prove existence of ε > 0, 0 < α′′ < 1, and a continuous function
p∗

a : [−2,0] → (0,1) such that ∀u1(a) ∈ [umin
1 , umax

1 ], conditions (i)–(ii) imply G(u1(a)|{x(a),

g(a)}) < 0.

Proof. The statement is trivially true for recommendations u1(a) ∈ [vmax
1 , umax

1 ] sent only by
types x(a) and g(a), so that the DM’s maximum gain to deviating is precisely G(u1(a)|{x(a),

g(a)}). So, consider a recommendation u1(a) ∈ [umin
1 , vmax

1 ] sent by four types, {z(a′), h(a′),
x(a), g(a)}, with a′ = v−1

1 (u1(a)). To show that the DM does not want to deviate, it suffices to
ensure that the following upper bound on the gain to deviating is weakly negative:(

p1(a) + p2(a)
) · G(

u1(a)|{x(a), g(a)
})

+ (
r1(a) + r2(a)

) · G(
u1(a)|{z(a′), h(

a′)}) (33)

31 Note that the time t = 2αa recommendations sent by Group II, III pairs do not convey any new information, since
the DM would already have inferred the true separable group at time 2α0.
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where G(u1(a)|{z(a′), h(a′)}) is the maximal gain to deviating at information set
{z(a′), h(a′)}.32 For this, it suffices to choose posteriors for which G(u1(a)|{x(a), g(a)}) is
strictly negative ∀u1(a) ∈ [umin

1 , umax
1 ]: since the actions u1, u2, v1, v2 are all bounded, and so

G(u1(a)|{z(a′), h(a′)}) is likewise bounded, it will then follow immediately from continuity
that we can choose a small enough weight γ to guarantee that the expression in (33) is negative
whenever r1(a) + r2(a) < γ . �
Step 2. G(u1(a)|{x(a), g(a)}) < 0 only if pa ∈ (p∗

a −√
εa,p

∗
a +√

εa ), where pa ≡ p1(a)
p1(a)+p2(a)

,
and

p∗
a = 1

2
+ a

θ3ea
− 1 + 2K

θ3e
a

T
, (34)

εa =
(

T − 2

T

)(
1

4
+ a

θ3ea
− (1 + 2K

θ3e
a )2

2T

)
−

(
1 − α0

α0

)
2K2

T (θ3ea)2
. (35)

Proof. If the DM receives recommendation u1(a) and assigns probabilities pa,1 − pa to types
x(a), g(a) (with pa ≡ p1(a)

p1(a)+p2(a)
), then his expected disutility is

pa

(
2αa

(
u1(a) − x(a)

)2 + 2(1 − αa)
(
u2(a) − x(a)

)2 + (T − 2)(0)
)

+ (1 − pa)
(
2αa

(
u1(a) − g(a)

)2 + 2(1 − αa)
(
u2(a) − g(a)

)2 + (T − 2)(0)
)
.

Using (15) and (16), and substituting in x(a) = θ3 + a − θ3e
a , g(a) = θ3 + a (from (11)), this

simplifies to

2K2

α0
+ T a2 − 4Ka + 2paθ3e

a
(
2K − T a + θ3e

a
)
. (36)

If he instead chooses the myopically optimal action pax(a) + (1 − pa)g(a) for the remaining T

periods of the game, he earns disutility

T · (pa

(
pax(a) + (1 − pa)g(a) − x(a)

)2 + (1 − pa)
(
pax(a) + (1 − pa)g(a) − g(a)

)2)
= Tpa(1 − pa)

(
θ3e

a
)2

, using g(a) − x(a) = θ3e
a, by (11). (37)

Subtracting (37) from (36), we obtain the following expression for G(u1(a)|{x(a), g(a)}):
2K2

α0
+ T a2 − 4Ka + (

4K − 2T a − (T − 2)θ3e
a
)(

θ3e
a
)
pa + Tp2

a

(
θ3e

a
)2

.

This expression is negative if and only if pa ∈ (p∗
a − √

εa,p
∗
a + √

εa ), where p∗
a, εa are as given

by (34) and (35). �
Step 3. To complete the proof for case βa2

b � 8, it suffices to show that Step 2 expressions p∗
a ,

εa satisfy limα0→1 p∗
a ∈ (0,1), ∀ ∈ [−2,0], and ε ≡ mina∈[−2,0](limα0→1 εa) > 0, where

32 This expression describes the amount that the DM could gain, if he were able to learn which of the sets {x(a), g(a)},
{z(a′), h(a′)} contained the true state θ prior to choosing his deviation. Since this information is in fact not available at
time t = 0 – he knows only that θ ∈ {x(a), g(a), z(a′), h(a′)} – the expression in (33) is an upper bound on the gain to
deviating.
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lim
α0→1

εa =
(

T − 2

T

)(
1

4
+ a

θ3ea
− 1

2T
+ 1 − (1 + 2K

θ3e
a )2

2T

)
, (38)

lim
α0→1

p∗
a = 1

2
+ a

θ3ea
− 1 + 2K

θ3e
a

T
, (39)

with

K = βab

1 − β

(
1 +

√
T − τ

2β

)
. (40)

Proof. Expressions (38) and (39) are the limits of (34) and (35) as α0 → 1, using the value
for K obtained by taking limits (as α0 → 1) in (17). Since all expressions are continuous in both
a and α0, Steps 2 and 3 together imply existence of α′′ < 1, ε ≡ mina∈[−2,0] εa > 0, and a con-
tinuous function p∗

a : [−2,0] → (0,1) such that α0 > α′′ and p1(a)
p1(a)+p2(a)

∈ (p∗
a − ε,p∗

a + ε)

imply G(u1(a)|{x(a), g(a)}) < 0. For recommendations u1(a) sent only by Group III pairs
(x(a), g(a)), this is precisely a restatement of Proposition C5. For recommendations u1(a)

sent by Group I and II pairs, Step 1 established existence of γ > 0 such that whenever
r1(a) + r2(a) < γ , the condition G(u1(a)|{x(a), g(a)}) < 0 is sufficient to rule out profitable
DM deviations at time t = 0. �
Step 4. Completing the proof if ab ∈ [−3.18,−2) ⇔ β ∈ (0.50102,0.79202]. By Step 3, we
need only show that the expression limα0→1 εa in (38) is strictly positive ∀a ∈ [−2,0], and that
the expression limα0→1 p∗

a in (39) is strictly positive and below 1.
We first prove that limα0→1 εa > 0, ∀a ∈ [−2,0]. For this, we first show that there exists ε′ > 0

with 1 + K

θ3e
−2 > ε′: Substituting (40) and the relationship θ3e

−2 = ab − 2 + 2e−ab (from (10))

into this inequality, we find that it holds iff
√

β(T −τ
2 ) < (

2(1−β)(e−ab −1)+ab−ab
); the RHS of this

equation, using (13), is greater than 2 for ab ∈ [−3.18,−2], while the LHS is strictly below 2
√

4
5

by (14), in particular T − τ � 8, and by the fact that β < 4
5 for the range under consideration.

This establishes existence of the desired ε′. But then since K < 0 ⇒ d
da

K
θ3e

a > 0, it then follows
that

min
a∈[−2,0]

(
1 −

(
1 + 2K

θ3ea

)2)
= min

a∈[−2,0]
−4K

θ3ea

(
1 + K

θ3ea

)
� −4K

θ3e0

(
1 + K

θ3e−2

)
> −4K

θ3
ε′

⇒ max
a∈[−2,0]

(
1 + 2K

θ3ea

)2

< 1 − ε, where ε = −4K

θ3
ε′ > 0. (41)

Substituting this into the final term in (38), also noting that a/θ3e
a is increasing in a, we obtain

ε ≡ min
a∈[−2,0]

(
lim

α0→1
εa

)
>

(
T − 2

T

)(
1

4
− 2

θ3e−2
− 1

2T
+ ε

2T

)
.
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This is strictly positive, as desired, by the fact (using (14) and (10)) that ab ∈ [−3.18,−2) implies
θ3e

−2 > 10.778 and T � 5−2β
1−β

� 5−2(0.50102),
1−0.50102 , so that

1

4
− 2

θ3e−2
− 1

2T
> 0. (42)

Finally, we prove p∗
a ∈ (0,1). By (41), (1 + 2K

θ3e
a ) ∈ (−1,1); substituting this into (34), we

obtain

min
a∈[−2,0]

(
1

2
+ a

θ3ea
− 1

T

)
� lim

α0→1
p∗

a � max
a∈[−2,0]

(
1

2
+ a

θ3ea
+ 1

T

)
.

Since a/θ3e
a is increasing in a, the lower bound is 2( 1

4 − 1
θ3e

2 − 1
2T

), which is positive by (42),
and the upper bound is less than 1 by T > 2. �
Step 5. Completing the proof if ab ∈ [−2,−1.775]: see online appendix. �
Proposition C6.1 (No DM deviations at t = 2). If (p1(ab),p2(ab), r1(ab)) satisfy r1(ab) �

β
1−β

p2(ab) and the conditions in Proposition C5, then there are no profitable deviations at t = 2.

Proof. By Proposition C4, we need only worry about deviations at time t = 2 if θ ∈ {0, θ2, θ3}.
Recall that at time t = 2, type x(0) = 0 separates by recommending the true state, 0, while types
g(0), z(ab) continue to follow observationally equivalent strategies: type g(0) = θ3 recommends
the true state, and type z(ab) = θ2 continues to recommend v2(ab) = θ3 until revealing the truth
at time T − τ . It is clear that the DM cannot gain by deviating if the expert recommends zero,
so consider a recommendation θ3 at time t = 2. In this case, Bayesian updating implies pos-
terior probability p2(ab)

p2(ab)+r1(ab)
on type θ3, and the residual probability on type θ2. If the DM

follows the recommendation, he earns expected disutility 0 if he is in fact facing a type θ3, and
(T − τ − 2)(θ3 − θ2)

2 if he is in fact facing type θ2 (who recommends θ3 until revealing the truth
at time T − τ ); using (12) and (10), the expected disutility is then (1−β)(T −2)(4)

r1(ab)
p2(ab)+r1(ab)

.

The best deviation is to choose the myopically optimal action, p2(ab)θ3+r1(ab)θ2
p2(ab)+r1(ab)

, in all T − 2 re-

maining periods, for disutility 4(T − 2)
p2(ab)r1(ab)

(p2(ab)+r1(ab))
2 . Comparing the two payoffs, we find that

deviations are unprofitable whenever the following condition holds

(1 − β)(T − 2)(4)
r1(ab)

p2(ab) + r1(ab)
� 4(T − 2)

p2(ab)r1(ab)

(p2(ab) + r1(ab))2

which rearranges to the desired condition, (1 − β)r1(ab)� βp2(ab). �
Proposition C6.2 (No deviations at t = 2α0). Let βa2

b � 8. For all a ∈ (ab,0], let qa ≡
r1(a)

r1(a)+r2(a)
, so that (qa,1 − qa) are the DM’s posteriors on types (z(a), h(a)) after recommenda-

tion v2(a). If Proposition C5 conditions hold, then there exist numbers α∗∗ < 1 and ε � 0.145,
and a continuous function q∗

a : [ab,0] → (0.2,0.7) such that the DM’s gain to deviating at
t = 2α0 is strictly negative whenever α0 > α∗∗ and qa ∈ (q∗

a − ε, q∗
a + ε).

Proof. Recall that time t = 2α0, Group II pairs separate out from Group I pairs who sent the
same initial recommendation. If the DM learns that he is facing a Group II pair {x(a), g(a)},
profitable deviations are ruled out by posteriors specified in Proposition C5: The gain to devi-
ating at time t = 2α0 is smaller than G(u1(a)|{x(a), g(a)}) (defined following Proposition C5
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statement), which was shown to be negative. So, it remains to rule out profitable deviations fol-
lowing Group I recommendations v2(a). We prove this in three steps:

Step 1. The DM’s maximum gain to deviating after recommendation v2(a) is negative whenever
qa ∈ (q∗

a − √
εa, q

∗
a + √

εa ), where

q∗
a = φ2 − 1 − 2(

v2(a)−h(a)
h(a)−z(a)

)

2φ2
, (43)

εa = φ2 − 1

(2φ2)2

(
φ − 1 − 2

(
v2(a) − h(a)

h(a) − z(a)

))(
φ + 1 + 2

(
v2(a) − h(a)

h(a) − z(a)

))
, (44)

φ2 ≡ T − 2α0

T − τ − 2α0
. (45)

Proof. If the DM follows recommendation v2(a) at time 2α0 (expecting to choose this action
until learning the truth at time T − τ ), his expected disutility is

(T − τ − 2α0)
(
qa

(
v2(a) − z(a)

)2 + (1 − qa)
(
v2(a) − h(a)

)2) + τ(0).

Choosing the myopically optimal action qaz(a)+ (1 − qa)h(a) in all remaining T − 2α0 periods
yields disutility

(T − 2α0)qa(1 − qa)
(
h(a) − z(a)

)2
.

So, the gain to deviating is negative at any belief qa satisfying the following inequality:

0 >
(
qa

(
v2(a) − z(a)

)2 + (1 − qa)
(
v2(a) − h(a)

)2)
− (T − 2α0)

(T − τ − 2α0)
qa(1 − qa)

(
h(a) − z(a)

)2

= qa

(
2

(
v2(a) − h(a)

h(a) − z(a)

)
+ 1

)
+

(
v2(a) − h(a)

h(a) − z(a)

)2

− φ2qa(1 − qa),

with φ2 as defined in (45). Solving for the values of qa for which this (quadratic) expression is
negative, we obtain the desired Step 1 conditions. �
Step 2. Step 1 functions q∗

a , εa satisfy the following bounds:

q∗
a ∈

[
φ2 − 1

2φ2
,
φ2 − 1 + φ2+φ

√
φ2−t

e

2φ2

]
, (46)

min
a∈[ab,0] εa �

φ2 − 1

(2φ2)2
(φ − 1 − 0)

(
φ + 1 − φ2 + φ

√
φ2 − t

e

)
. (47)

Proof. We first calculate bounds on 2(
v2(a)−h(a)
h(a)−z(a)

). By (19) and (11), we have

v2(a) − h(a)

= 2K − T (a − ab) +
√

4τα0
T −τ−2α0

√
(
T −τ−2α0

τα0
)K2 + 2K(a − ab) − T

2 (a − ab)2
T − τ T − τ
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= 2K − T (a − ab)

T − τ

+
√(

2K

T − τ

)2

+ 2τα0

(T − τ − 2α0)(T − τ)

(
4K

T − τ
(a − ab) − T

(T − τ)
(a − ab)2

)
.

Setting k ≡ 2K
T −τ

, t ≡ T
T −τ

, and y ≡ a − ab , noting (using (45)) that 2τα0
(T −τ)(T −τ−2α0)

= φ2 − t ,

and multiplying by 2
h(a)−z(a)

= 1
ey (by (11) with y = a − ab), we then obtain

2

(
v2(a,α0) − h(a)

h(a) − z(a)

)
= k − ty + √

k2 + (φ2 − t)(2ky − ty2)

ey
≡ ξ(y)

ey
. (48)

So we wish to obtain upper and lower bounds on the expression ξ(y)
ey in (48), for a ∈ [ab,0] ⇔

y ∈ [0,−ab]. By construction, the value of K specified in (17) sets the square rooted portion of
v2(·) is equal to zero at a = 0 ⇔ y = −ab, so we have

k2 + (
φ2 − t

)(−2kab − ta2
b

) = 0 ⇔ k = ab

(
φ2 − t + φ

√
φ2 − t

)
. (49)

Next, differentiate (48) to obtain

ξ ′(y) = −t + (φ2 − t)(k − ty)√
k2 + (φ2 − t)(2ky − ty2)

and

ξ ′′(y) = −k2φ2(φ2 − t)

(k − ty + √
k2 + (φ2 − t)(2ky − ty2))

3
2

;

both are strictly negative, by φ2 > t , k > 0, and y � 0, so we conclude that ξ(·) is strictly de-
creasing and concave. Therefore, ξ(·) reaches a maximum over the interval y ∈ [0,−ab] at y = 0,
and lies above the straight line connecting the points (0, ξ(0)) and (−ab, ξ(−ab)): since we have
ξ(−ab) = k + tab and ξ(0) = k + √

k2 = 0 (by (48) and (49)), this line ξ̃ is given by

ξ̃ (y) − ξ̃ (0) = ξ̃ (−aγ ) − ξ̃ (0)

−ab

(y − 0) ⇒ ξ̃ (y) = k + tab

−ab

y.

Substituting in (49), we then obtain the following bounds:

min
y∈[0,−ab]

ξ(y)

ey
� min

y∈[0,−ab]
ξ̃ (y)

ey
= (−φ2 − φ

√
φ2 − t

)(
max

y∈[0,−ab]
y

ey

)
= −φ2 − φ

√
φ2 − t

e
,

max
y∈[0,−aγ ]

ξ(y)

ey
�

maxy∈[0,−aγ ] ξ(y)

miny∈[0,−aγ ] ey
= ξ(0)

e0
= 0.

Finally, the desired expressions (46) and (47) follow immediately by substituting 2(
v2(a)−h(a)
h(a)−z(a)

) ∈
[−φ2−φ

√
φ2−t

e
,0] into (44) and (43). �

Step 3. To complete the proof, it suffices to prove that in the limit α0 → 1, the expression in (47)
exceeds (0.145)2, and the interval in (46) is contained in the interval (0.2,0.7).
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Proof. Immediate by Steps 1, 2, and the obvious continuity of q∗
a , εa in both a,α0. �

Step 4. Completing the proof. Consider the limit as α0 → 1. Then, φ2 → T −2
T −τ−2 = 1

1−β
(us-

ing (12), in particular τ = β(T − 2)), and t = T
T −τ

= (1 − 2β
T −τ

)/(1 − β); substituting into (46)
and (47), we obtain

q∗
a ∈

[
β/2, β/2 +

(
1 +

√
2β

T − τ

)
/2e

]
, (50)

min
a∈[aγ ,0] εa �

β

2

(
β −

(
1 − √

1 − β√
1 − β

)(1 +
√

2β
T −τ

e

))
. (51)

For the range β ∈ [0.4173,0.50102), (14) specifies T = 7, so that (by (12)) T − τ = 7 − 5β; in
this case, it may easily be verified numerically that our lower bound on

√
εa in (51) reaches a

minimum (at β = 0.4172) of 0.163, our lower bound on q∗
a in (50) is at least β

2 � 0.4172
2 , and

our upper bound on q∗
a in (50) is at most maxβ∈[0.4172,0.50102](β

2 + 1+
√

2β
7−5β

2e
) = 0.521 30. For the

range β ∈ [0.50102,0.79202), (14) specifies T − τ ∈ [5,8]. Over this range, it may easily be
verified numerically that our lower bound on

√
εa in (51) is minimized at β = 0.79202, and is

increasing in T − τ , with a minimum value (at β = 0.79202, T − τ = 5) of 0.14505 (and any
T −τ ∈ [6,8] guarantees εa > 0.15). Our lower bound on q∗

a in (50) is at least 0.50102
2 > 0.25, and

the upper bound is at most maxβ∈[0.50102,0.79202](β
2 + 1+

√
β

2.5
2e

) = 0.7. As desired, this establishes
that if we choose a horizon T satisfying (14) and an α0 sufficiently near 1, then q∗

a ∈ (0.2,0.7)

and εa > 0.145. �
Bayesian beliefs: Our incentive constraints for the DM were specified in terms of his posteriors,
which in turn depend both on his prior F , and on the precise details of our construction. We now
show in Proposition C7 (via a preliminary result in Lemma C7.1) that the posteriors satisfying
the conditions in Propositions C5, C6.1, C6.2 are the Bayesian posteriors corresponding to some
prior over the state space.

Lemma C7.1 (Constructing priors). Let strategies be as specified in Appendix C.1, with
α(·) satisfying (20). For any continuous functions p : [−2,0] → (0,1), q : [ab,0] → (0,1),
and r : [ab,0] → [0,1] such that p(·), q(·) are bounded away from 0 and 1, there exists
a density f over the state space such that, in our construction, a Bayesian DM will hold
the following posterior beliefs: (i) ∀a ∈ [−2,0], Pr(θ=x(a)|u1(a))

Pr(θ=g(a)|u1(a))
= p(a)

1−p(a)
; (ii) ∀a ∈ (ab,0],

Pr(θ=z(a)|v1(a))
Pr(θ=h(a)|v1(a))

= q(a)
1−q(a)

; (iii) ∀a ∈ (ab,0], Pr(θ∈{z(a),h(a)}|v1(a))

Pr(θ∈{x(u−1
1 (v1(a))),g(u−1

1 (v1(a)))}|v1(a))
<

γ
1−γ

, for any

γ > 0; and (iv) Pr(θ=z(ab)|v2(ab))
Pr(θ=g(0)|v2(ab))

<
β

1−β
.

Proof. As explained in Section 5, we assume that the DM is Bayesian. For our construction,
(7) then implies the following relationships between priors and posteriors:

Pr(θ = x(a)|u1(a))

Pr(θ = g(a)|u1(a))
= f (x(a))

f (g(a))

∣∣∣∣x′(a)

g′(a)

∣∣∣∣ = f (x(a))

f (g(a))

(
θ3e

a − 1
)
, ∀a ∈ [−2,0], (52)

Pr(θ = z(a)|v2(a)) = f (z(a))
∣∣∣∣ z′(a)

′

∣∣∣∣ = f (z(a)) (
2ea−ab − 1

)
, ∀a ∈ [ab,0]. (53)
Pr(θ = h(a)|v2(a)) f (h(a)) h (a) f (h(a))
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And, for recommendations v ∈ (vmin
1 , vmax

1 ] sent by the four types {z(a),h(a), x(a′), g(a′)} with
a = v−1

1 (v) > ab and a′ = u−1
1 (v) < 0, we use33

Pr(θ = z(a)|v1(a))

Pr(θ = x(a′)|v1(a))
= lim

ε→0

F(z(v−1
1 (v + ε))) − F(z(v−1

1 (v − ε)))

F (x(u−1
1 (v + ε))) − F(x(u−1

1 (v − ε)))
= dF (z(a))

dF (x(a′))
. (54)

Consider first the expression in (54). If βa2
b � 8, so αa = α0 (constant), solving (15), (18) for

u−1
1 (v), v−1

1 (v) and differentiating yields34

dF(z(a))

dF (x(a′))
= f (z(a))

f (x(a′))

(
2ea−ab − 1

θ3ea′ − 1

)∣∣∣∣u′
1(a

′)
v′

1(a)

∣∣∣∣,
with ∣∣∣∣u′

1(a
′)

v′
1(a)

∣∣∣∣
=

( (

√
T −τ−2α0

2β
)(−T (v − vmin

1 ) − (T −2α0)K
α0

) −
√

(T − 2)(v − vmin
1 )(−2K(T − 2α0) − T α0(v − vmin

1 ))

√
1 − α0(−T (v − vmin

1 ) − (T −2α0)K
α0

) +
√

(T − 2)(v − vmin
1 )(−2K(T − 2α0) − T α0(v − vmin

1 ))

)
.

This expression for |u′
1(a

′)
v′

1(a)
| is strictly decreasing in (v − vmin

1 ), and therefore reaches a maximum

value, at v = vmin
1 , of

√
T −τ−2α0
2β(1−α0)

; in fact, it can be shown that this same upper bound obtains

in the case βa2
b > 8, where α is a continuous decreasing function which reaches a minimum

value, α0, at a = 0 = u−1
1 (vmin

1 ). Therefore, for any α0 < 1, there exists a finite number λ such
that

Pr(θ = z(a)|v1(a))

Pr(θ = x(a′)|v1(a))
� λ

(
f (z(a))

f (x(a′))

)
, ∀a ∈ [ab,0]. (55)

It is now straightforward to construct a density with the desired properties. Here is one such
construction: begin by setting

f (x(a)) = 1

M
, ∀a ∈ [−2,0] (56)

and with M a constant to be determined (this specifies a density over [0, θ1]). Next, to specify a
density over [θ2, θ3] such that condition (i) holds, substitute (56) into (52) and condition (i), to
obtain

f
(
g(a)

) =
(

θ3e
a − 1

M

)(
1 − p(a)

p(a)

)
, ∀a ∈ [−2,0]. (57)

For (iv), use (55) and condition (i) to obtain

Pr(θ = z(ab)|v1(a))

Pr(θ = g(0)|v1(a))
= Pr(θ = z(ab)|v1(a))

Pr(θ = x(0)|v1(a))

p(0)

1 − p(0)
� λ

(
f (z(ab))

f (x(0))

)(
p(0)

1 − p(0)

)
.

33 In the limit expression, replace (v + ε) with v if v = vmax, and replace (v − ε) with v if v = vmin.

34 The point of this paragraph is to show that | u
′
1(a′)

v′
1(a)

| is bounded. If this were not the case, then it would not be possible

(via a suitable choice of prior) to ensure posterior beliefs satisfying Proposition C5 requirement that the weight on pair
{z(a),h(a)} be below some cutoff λ. This takes some care for recommendations near u1(0) = v1(ab), noting from (15)
and (18) that u′ (0) = v′ (ab) = 0.
1 1
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So, by (56), we can satisfy condition (iv) by setting

λ

(
f (z(ab))

f (x(0))

)(
p(0)

1 − p(0)

)
� β

1 − β

⇔ f
(
z(ab)

)
� 1

λ

(
β

1 − β

)(
1

M

)(
1 − p(0)

p(0)

)
. (58)

For (iii), use (with a′ ≡ u−1
1 (v1(a)))

Pr(θ ∈ {z(a),h(a)}|v1(a))

Pr(θ ∈ {x(a′), g(a′)}|v1(a))
= Pr(θ = z(a)|v1(a))

Pr(θ = x(a′)|v1(a))

( 1 + Pr(θ=h(a)|v1(a))
Pr(θ=z(a)|v1(a))

1 + Pr(θ=g(a′)|u1(a
′))

Pr(θ=x(a′)|u1(a
′))

)

< λ

(
f (z(a))

f (x(a′))

)(
p(a′)
q(a)

)
by (55) and condition (ii).

So, if condition (ii) is satisfied and (56) holds, then we can satisfy condition (iii) by setting

f
(
z(a)

)
<

1

λ

(
γ

1 − γ

)(
1

M

)(
q(a)

p(u−1
1 (v1(a)))

)
, ∀a ∈ [ab,0]. (59)

Together with (58), this specifies a density over [θ1, θ2] which satisfies properties (iii) and (iv) of
the proposition. Lastly, to construct a density over (θ3,

1
b
], substitute (53) into condition (ii), to

obtain

f
(
h(a)

) = f
(
z(a)

)(
2ea−ab − 1

)(1 − q(a)

q(a)

)
. (60)

Thus, it suffices to set (59) to hold with equality, and substitute into (60) to obtain

f (h(a)) = 1

λ

(
γ

1 − γ

)(
1

M

)(
1 − q(a)

p(u−1
1 (v1(a)))

)(
2ea−ab − 1

)
. (61)

Finally, choose M so that the total measure of the type space integrates to 1: this is possible since
the densities in (56), (57), (59), and (60) are all finite. So, integrating over the state space yields
a finite number divided by M ; choose M so that this number equals 1. �
Proposition C7 (Priors for Theorem 1). There is an open set of priors F over the state space
which yield Bayesian posterior satisfying the conditions in Propositions C5, C6.1, C6.2.

Proof. After any recommendation u1(a) ∈ [umin
1 , umax

1 ], let (r1(a
′), r2(a

′),p1(a),p2(a)) denote
the DM’s posteriors on types (z(a′), h(a′), x(a), g(a)), with a′ = v−1

1 (u1(a)) if also u1(a) ∈
[vmin

1 , vmax
1 ], and defining r1(a

′) = r2(a
′) = 0 otherwise. Proposition C5 requires two conditions:

(i) that p1(a)
p1(a)+p2(a)

lie with in an ε-interval of a number p∗
a (for some strictly positive ε, and

with p∗
a a continuous function bounded away from 0 and 1); that is, p1(a)

p2(a)
≡ Pr(x(a))

Pr(g(a))
must be

sufficiently close to p∗
a

1−p∗
a

; (ii) that r1(a
′)+r2(a

′)
p1(a)+p2(a)

be below γ
1−γ

, for some γ > 0. Proposition C6.2

requires additionally that ∀a ∈ [ab,0], r1(a)
r2(a)

≡ qa

1−qa
be sufficiently close to a number q∗

a

1−q∗
a

, with
q∗
a a continuous function bounded away from 0 and 1. We showed in Lemma C7.1 that for such

functions p∗
a, q

∗
a , and such a number γ > 0, there is a prior F generating Bayesian posteriors

p1(a) = p∗
a ∗ (condition (i)), r1(a

′)+r2(a
′)

<
γ (condition (iii)), r1(a) ≡ q∗

a ∗ (condition (ii)),

p2(a) 1−pa p1(a)+p2(a) 1−γ r2(a) 1−qa
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and which satisfies the condition in Proposition C6.1 (condition (iv)). It follows immediately that
any density which is sufficiently close to F will generate posteriors satisfying the conditions in
Propositions C5, C6.1, C6.2, thus yielding the desired open set. �
C.4. Completing the proof of Theorem 1

Appendix C.2 proved that the expert cannot gain by deviating from the strategy specified in
Appendix C.1. Appendix C.3 established (Proposition C4) that it is sufficient to rule out prof-
itable DM deviations at times t ∈ {0,2α0,2}, and then proved that there is an open set of priors
(Proposition C7) which generate, as Bayesian posteriors, beliefs at which the DM will find it opti-
mal to follow all expert recommendations at time t = 0 (Proposition C5), and at times t = 2α0,2
(Propositions C6.1, C6.2). Since the off-path strategies specified in Appendix C.1 are trivially
optimal, and the DM’s beliefs Bayesian, it follows that our strategies indeed constitute a fully
revealing equilibrium under Proposition C7 priors. This completes the proof if time is continu-
ous. With integer constraints, our timeline is most easily modified via public randomization and
“scaling up”.35,36

Appendix D. Supplementary material

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/
j.jet.2013.12.012.
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