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Abstract

The monotone likelihood ratio property (MLRP) is widely used in economics.
Equivalent to Karlin’s (1968) total positivity of order 2 (log-supermodularity),
many of its applications follow from Karlin’s variation diminishing property (VDP).

I characterize the proportionate likelihood ratio property (PLRP), which also
asks that the likelihood ratio grow at a log-supermodular rate, and is equivalent
to Karlin’s total positivity of order 3: I derive an easily checked differential test
for the PRLP in general, and an easier one for location family signals.

While the MLRP preserves monotonicity, the PLRP preserves quasiconcavity
and quasiconvexity, and also ensures that expectations of more concave (or convex)
functions grow more concave (or convex). So while the MLRP sees application
in the vertical economic models, where higher is better, the PLRP is useful in
horizontal (variety) economic models, such as matching with the right partner.

I illustrate the usefulness of this theory by many examples, including proofs of
a few classic information economics results. I end with a new, quick, and gentle

proof of the VDP, hoping to make this theory accessible to a larger audience.

*Email: andrea.q.wilson@gmail.com. I thank Lones Smith for many helpful comments, and Luciano

Pomatto for a suggestion that motivated Theorem @ I am also grateful to Mavi for furry input.



1 Introduction

The monotone likelihood ratio property (MLRP) — or a log-supermodular signal kernel
— is an essential tool for information economics. It ensures that higher signal realizations
lead to higher expected payoffs whenever the payoff function is increasing in the state.
Given an MLRP kernel, expectation of functions that single cross through zero share
this property (Karlin and Rubin, 1956). This observation inspired the later variation
diminishing property (VDP), summarized in the text Karlin (1968). The VDP says that
under determinant conditions on the stochastic kernel, called total positivity (TP), an
expectation of a function has weakly fewer sign changes than the function does, and
in the same order. For instance, totally positive of order 2 (TP-2) is equivalent to the
MLRP (or log-supermodularity). Next, totally positive of order 3 (TP-3) imposes an
additional determinant condition on the kernel, and preserves two-crossing properties of
the sign of the function, etc. This note has two purposes: I flesh out TP-3 functions —
both how to practically check this property and how useful it is in economics — and I
then offer a new and simple proof of the variation diminishing property.

I flesh out properties of signal families in §E I seek to characterize the proportionate
likelihood ratio property (PRLP) on kernels that strengthens the MLRP, also requiring
that the likelihood ratio grow at a log-supermodular rate. The PLRP is equivalent
to TP-3, and can easily be checked given a differentiable kernel (Theorem E]) I then
specialize these conditions to additive location family signals (Corollary m) Such signal
families often induce discrete signals using truncations — e.g., “take the high action
above a cutoff”. The MLRP works well with truncation because the indicator function
is log-supermodular, and so multiplication preserves it. While the PLRP lacks this useful
preservation property, Theorem E rescues it when the kernel density vanishes near the
truncation point, as happens in some canonical families.

I then explore how expectations reflect the properties of stochastic kernels in §E
Proposition m carefully lays out the VDP, nuancing weak and strict versions — where
the latter assumes strict TP determinant signs. The MLRP ensures that increasing
functions have increasing expectations given the signal, and posterior beliefs stochasti-
cally ranked in signals. So inspired, Milgrom called this the favorable news’ ranking of
signals. Corollaries E and a offer parallel presentations of these and analogous PLRP
properties —- that integration preserves quasiconcavity (and quasiconvexity), and that
slope of posterior cdf’s in the signal are MLRP. The strict PRLP ensures that the ex-

pectation of a nonconstant quasiconcave function has no flats. I suggestively call this



signal ranking harmonious news, since it preserves the curvature of both hump-shaped
and U-shaped functions. Whereas the MLRP applies to “vertical” or “quality” models,
with monotone objectives, the PLRP is designed for “horizontal” or “variety’ models,
with hump-shaped objectives, such as in matching and voting. One might then wonder
if PLRP yields parallel preservation results for concavity and convexity. In Figure B, I
show by example that this is false: an inverted quadratic may well have a nonconcave
expectation. Instead, the PLRP implies that more concave functions have more concave
expectations, and more convex functions have more convex expectations (Theorem B)
In §@, I turn to the behavior of optimal actions. By monotone comparative statics
theory, a scalar optimizer is monotone in a scalar parameter when the marginal return
is monotone in that parameter. This same comparative statics conclusion holds when
maximizing an expectation given an MLRP kernel, since that preserves the single cross-
ing property. Consider next an expectation with respect to a PLRP kernel. Corollary @
says that in this case, the optimizer is quasiconcave (or quasiconvex) in a parameter
when the marginal return of the integrand is quasiconcave (respectively, quasiconvex).
Finally, §B offers a quick new “peasant’s proof” of the VDP, avoiding Karlin’s involved
appeals to matrix decomposition. To see that taking expectations reduces sign variation,
I consider the contrapositive: If an expectation has n sign changes, then so too does the
function. This is obvious with just one sign change. The expectation of a positive
function is positive, and so an expectation can only change signs if the function does.
More generally, I treat the portion of the function between each pair of adjacent crossing
points as a single “unknown”, and show that asking an expectation to change sign n
times when the function does not is like solving n equations in fewer than n unknowns.
My paper is intended to be a self-contained user’s manual for the PLRP and VDP,
and relies on many illustrative examples. 1 also include quick proofs of two classic
results in information economics: I prove the main comparative static for increasing
risk aversion in Diamond and Stiglit7 (1974) using fewer differentiability assumptions.
Pratt’s (1988) deduction of the preservation of risk aversion ranking of interim utility
functions under additional independent risks likewise follows.
Towards a self-contained presentation, I err on the side of including results that
overlap with mine, flagging when it hauppens.ﬂ To keep track, my novel results are
called theorems, gentle consequences of old results are corollaries, and Karlin’s VDP is

a proposition. Most remaining proofs are in the Appendix.

Most notably, Chade and Swinkels (2019) recently derives a condition very close to my Theorem m(c)
They focus on the LSPM of the signal survivor derivative, with applications primarily in contract theory.



2 Signal Families

2.1 A New Property for General Signals

Consider a kernel ¢ : S x © — R on the linearly ordered subsets ©,S C R or the
integers. We often interpret © as states, S as realized signals, and ¢ a transition kernel.
The (strict) monotone likelihood ratio property holds if for every sy € S, the likelihood
ratio (s, 0) = ¢(s,0)/d(so, 0) is (strictly) monotone in 6, for all s > s5. Equivalently, ¢
is (strictly) log-supermodular (LSPM), or ¢(sg, 00)@(s,0) > (>)é(so,0)d(s,0p) if s > so
and 6 > 6. In the differentiable case, this is equivalent to [log ¢(s, 8)]so > (>)0.

We say that ¢ obeys the stronger (strict) proportionate likelihood ratio property
(PLRP) if not only is the likelihood ratio (increasing) nondecreasing, but its rate of
increase is itself log-supermodular. Namely, the (strict) PLRP means the (strict) MLRP,

and if for any 03 > 0 > 0; and s > s, the ratio is (increasing) nondecreasing in s:

(1)

If ¢ is twice differentiable, then it obeys the smooth proportionate likelihood ratio
property (PLRP*) if the derivative ¢y is log-supermodular for all § € © and s > s;.

Next, Karlin (1968) considers a key property of transition kernels ¢: In each case
below, ®,, is an arbitrary nxn matrix with (j, ¢)-th entry ¢;; = ¢(s;, 6;), where 6; < 0y <
c+» <O, and 51 < 89 < -+ < 5,. Then ¢ is totally positive of order 1 (written, TP-1) if
¢ > 0. Next, ¢ is totally positive of order 2 (TP-2) if it is TP-1 and the determinant of
®, is non-negative. Recursively, ¢ is totally positive of order k (TP-k) if it is TP-(k —1)
and the determinant of ®j is non-negative. Finally, ¢ is totally positive (TP) if it is
TP-n for all n = 1,2,.... In particular, TP-1 asserts ¢ > 0, TP-2 asserts ¢ > 0, and
¢ obeys the MLRP. But TP-3 imposes an additional condition whose formulation has

escaped simple formulation in the literature. I now address this gap.

Theorem 1 (PLRP) (a) The kernel ¢ is TP-3 iff it obeys the PLRP.
(b) If ¢ is twice differentiable in 0, then PLRP and PLRP* are equivalent.
(¢) If ¢ is C3, then (strict) PLRP* holds iff ¢ and ¢* - (log ¢)gs are (strictly) LspmE

%I recently learned that this condition was recently derived by Chade and Swinkeld (2019) (Lemma 1),
using the stronger version of the TP-3 property for C* kernels in Karlin (1957) (which does not parse
strict and weak cases) — while my proof could be relaxed from C® to C? (at some increase in complexity).
They prove the slightly weaker result that if ¢ obeys the strict MLRP, then strict LSPM of ¢2- (log ¢)gs
is equivalent to Karlin’s sufficient condition for TP-3, and in turn his necessary condition for TP-3
implies weak LSPM of ¢? - (log ¢)gs.



Often in applications, ¢ is a posterior density in s:

f(0)h(s]0)

= [f(@)h(s|z)dx (2)

¢(s,0)

where f(#) is the prior density, and h(s|f) the conditional signal density. Then ¢ is a
stochastic kernel, or a density in 0 for all s, so with ¢ > 0 and [ ¢(s,6)dd = 1 for all s.

As multiplication by a function of one variable does not affect total positivity,E it is
well-known that ¢ is TP-n if and only if the conditional signal density A is itself TP-n.
So MLRP and PLRP are preserved by multiplication by f(s), g(#) > 0:

¢(s,0) is MLRP (PLRP) iff f(0)g(s)¢(s,0) is MLRP (PLRP)Vf(6),9(s) >0 (%)

ExAMPLE 1. For an application of Theorem m, consider a Gamma density with

shape parameter o and scale parameter # > 0, namely, h(s|f) = s*te75 /[['(a)6°].
Then the stochastic kernel h(s|d) obeys both MLRP and PLRP. To see this, write

h(s|0) = f(0)g(s)e 7. Then h(s|f) obeys the MLRP and the PLRP iff ¢(s,6) = e7%
obeys both. Now, ¢ is LSPM since (log ¢)s = 1/6% > 0, i.e. obeys the MLRP. Next, by
Theorem m(c), ¢ obeys the PLRP, as log(¢? - (log ¢)s) = 21log ¢(s,6) — 21log 6 is SPM.
Or consider the Gaussian density. For this, given (x), the PLRP depends on the
exponential portion ¢(s,#), for which log ¢(s,) = —(s — 6)*/202. Since (logd)sy =
1/0? > 0, we see that ¢ is LSPM. Finally, this implies ¢?(log ¢)s ¢ = ¢*/0? is LSPM.

2.2 A New Property for Location Family Signals

We now assume an additive location signal family, with S = © C R and ¢(s,0) =
(s — 0), for a twice differentiable function ¢ : R — R*. As is well-known, ¢ obeys the
MLRP iff ¥ is log-concave, and so iff the rate of density change d(s) = (log(s))" is

nonincreasing. Theorem m(c) yields a simple PLRP characterization for location signals.

Corollary 1 The kernel ¢ obeys the PLRP iff 6 and 20 + 8"/’ are nonincreasing. In
particular, if ¢ obeys the MLRP and ¢ is log-concave, then ¢ obeys the PLRP.

EXAMPLE 2. For the Gaussian density, we see that §(s) = (—s%/20?) = —s/o?. This
is decreasing, as is 20 + 0" /8 = —2s/0?; and so the PLRP* follows from Corollary m

3TP-n asks that all minor determinants be non-negative in the matrix with (j,4)th entry ¢(s;,6;). If
we multiply ¢ by a function f : © — R™, then in the corresponding matrix, each entry in the ith column
is scaled by f(6;); this scales each minor determinant involving column ¢ by a factor of f(6;) > 0, and
as such, does not affect total positivity. Similarly for multiplication by a function of s only.
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We next apply Corollary m in an example that escapes Theorem El The extreme
value distribution is quite commonly used in economics W(s) = e/7¢"""" Jo. The
signal ¢(s,0) = (s — #) thus generated obeys both the MLRP and the PLRP since
§(s) = (e7*/7 — 1) /0o is decreasing, as is 20(s) + 0"(s)/8'(s) = (2¢7%/7 — 3) /0.

In many economic applications, such as choice among finitely many options (as often
arises in informational herding), the signal is truncated. Log-concavity is an incredibly
useful property in such settings, since it is preserved by truncation. Let’s review the
common reason why: a product of TP-2 functions is itself TP-2, and the indicator
function [y<, is TP-2 (Karlin, 1968), and so the truncated function ¢(s, #)-Ip<s is MLRP.

While Karlin (1968) also showed that the indicator function itself is totally positive of
all orders n, a product of two TP-3 functions is not generally itself P38 particular,
¢(s,0) - Iy<s need not obey PRLP even if ¢ : S x § — R does. But if the density ¢(s, 6)

vanishes for signals s near 6, then the indicator function preserves the PLRP:

Theorem 2 (Truncation) Let ¢: S x © = R. Then
(a) &(s,0)lg<s obeys the MLRP if ¢(s,0) obeys the MLRP.
(b) ¢(s,0)ly<s obeys the PLRP* iflimg g ¢(s,60)=0 for all 6, and ¢(s,0) obeys the PLRP*.

EXAMPLE 3. Consider the Gamma density (s) o I;>0s* 'e” 5. Then I claim that
the stochastic kernel h(s|f) = 1(s—0) obeys the MLRP if & > 1 and the PLRP if o > 2.

For the rate of change ¢ in the untruncated density obeys:

()= (tog(s" 1)) = S= =5 = %+ww:2(tﬂ_%)

By Corollary m, the MLRP holds since ¢ is decreasing for &« > 1, and the PLRP* since
26 4+ §" /0" is decreasing when a > 2. Since ¢(s|6) is continuous in s, and ¥(6|0) = 0,
Theorem E implies that MLRP and PLRP* survive the indicator function multiplication.

Next, the Chi-squared density ¥ (s) oc I;505*/271e=%/2 obeys the MLRP if k > 2, and
the PLRP* if & > 4. For the rate of change § of the untruncated density:

k—2 s\ k-2 1
“@—((77>b“—5)— 25 2

It suffices to note that this is decreasing, as is the expression 2§ + 6" /§ = (k—4)/s — 1.

4This calculation assumes shape parameter zero. More generally, the distribution obeys the MLRP
for any shape parameter in [—1,0] and the PLRP for any shape parameter in [—0.5,0].

5Given two TP-3 functions ¢1,¢s : § x © — RT; it need not be the case that for §; < 0 < 03 and
51 < 82 < s3, the 3 x 3 matrix with (j,4)th entry ¢1(s;,0;) - $2(s;,6;) has a non-negative determinant.

5



The limit condition in Theorem B(b) is sufficient, but not necessary. For example,

~25¢AM - Even though

assume that 1 is the exponential density. Then ¢(s,0) = Iy<s - Ae
¢(0,0) = A, this function nonetheless obeys the PLRP, as the product of two functions

that each depend on only one variable, and the TP indicator function.

3 Sign Changes of Expected Payoffs

I henceforth assume that u : © — R is piecewise continuous and ¢ : S x @ — R is
absolutely continuous w.r.t. a measure u, with © and S subsets of R. 1 now apply the
signal family properties in expectations. For this, I turn to Karlin’s variation diminishing
property (VDP). Let us call f: R+ R n-crossing if n is the maximum number of strict
sign changes, {+} to {—}, or vice versa, across all possible increasing sequences (t;),

namely:

{(f(t1)7"'af(tk))at1 <0 < tk,Vk € N}

Say that f has n weak sign changes if this is the maximum number of swaps from
{0,+} to {0, —1}, or vice versa, in any ordered sequence. Karlin derived total positivity
conditions on transition kernels (namely, [ ¢(s,6)du(0) = 1 is not needed) ¢ ensuring

that the expectation
U(s) = [ o(s, )u(®)du(0)

has at most as many sign crossings as u(f), and in the same order, i.e. first minus to

plus, or vice versa. Call u nondegenerate if u % 0 on a positive-measure subset of ©.

Proposition 1 (VDP) Let u be n-crossing, initially + to — (— to +).

(a) [WEAK] If ¢ is TP-(n + 1), then U(s) cannot have more than n sign changes, and
is initially + (=) if it is exactly n-crossing.

(b) [STRICT] If ¢ is strictly TP-(n+1), and u is nondegenerate, U(s) cannot have more
than n weak sign changes, and is initially {0,+} ({0, —}) if it has n weak sign changes.

In particular, if ¢ obeys the MLRP (and so is TP-2), then the VDP says that if a
function w is UlpcrossingE in @, then U(s) is upcrossing in sH And if ¢ is PLRP (and so
is TP-3), then the expectation of a two-crossing function is at most two-crossing, and in
the same sign change order. By the strict VDP, U cannot have any zero subintervals,

as this would constitute infinitely many weak sign changes.

6A function is upcrossing (respectively, downcrossing) if it crosses the horizontal axis at most once,
and if once, from below (respectively, above).
"This important result was first proved in Karlin and Rubin ([1956).



EXAMPLE 4. Assume a utility function u(x,y) for wealth z, whose Arrow-Pratt risk
aversion coefficient r,(z) = —u,,/u, falls in a parameter y. Namely, the marginal utility
of money u,(z,y) is LSPM. Diamond and Stiglit4 (1974) find that the risk premium
rises in risk aversion, or equivalently, the certainty equivalent rises in y. This follows
if Exu(X,y) — u(z,y) is upcrossing in y, for any z. For then Exu(X,y) = u(z,y)
implies Exu(X,y) > u(z,y’) for all ¥y > y, and therefore the certainty equivalent at
Yy exceeds z. Finally, if X has a density f and cdf F' over wealth, integration by parts

givesE )

T

[ e f@ds = utzg) = [ wnle) s - F@)is ®)

Since [,>, — F'(z) is upcrossing in z, expectation (B) is upcrossing in y, by Proposition m
)

Karlin (1968) offers a simple application of the VDP for stochastic kernels:

Corollary 2 (Preservation) Let (¢, ) define a stochastic kernel, and u : © — R.
(a) If ¢ obeys the MLRP, and u is monotone up (down), then so is U(s).
(b) If ¢ obeys the PLRP, and u is quasiconcave (quasiconvez), then so is U(s).

(¢) If premise (a) or (b) is strict, then U(s) nowhere constantd if u(0) is not constant.

Proof:  Any function u is monotone up (down) iff u(#) — ¢ is upcrossing (downcrossing),
for all ¢ € R. If ¢ obeys the MLRP, then [ ¢(s,0)(u(d) — c)du(0) = U(s) — ¢ is
upcrossing (downcrossing) for all ¢ € R, by Proposition El So U(s) is monotone up
(down). A function u(#) is quasiconcave if it crosses any horizontal line at most twice,
initially from below if twice. The proof now proceeds identically using the PLRP.

Part (c) follows from the strict VDP (Proposition m) O

The famous interpretation in Milgrom (1981)) of Corollary E(a) was that an MLRP
kernel ¢ ensures the favorable news rank order: Specifically, higher signals sy > s;
lead to higher expected payoffs U(sg) > U(s;) for any monotone payoff function u(6).
Say that signals have the harmonious news property if whenever u(f) is quasi-concave
(convex), then so too U(s). So just as the MLRP ensures the favorable news property,

PLRP guarantees the harmonious news property, by Corollary E(b)

ExAMPLE 5. In Example 4, assume final wealth X is the sum of two independent r.v.s
S and W, with S drawn with density f. Pratt (1988) sought conditions ensuring that

8Diamond and Stiglitz (1974) assumed three derivatives; this logic requires one.
9He omits Corollary P(b), but it’s an easy consequence.
10Namely, there is no open subinterval of R on which U(s) is constant.



the risk aversion ranking of interim utility functions U(w,y) = [ f(s)u(w + s,y)ds =
[ f(z —w)u(z, y)dz agrees with the ex post utility risk aversion rankmg of u(x,y).

Pratt showed that the interim risk aversion coefficients R, (w) = —Uy,/U,, are ranked
R, (w) > Ry, (w) when y; < yp if 7y, (z) > r(z) > ry,(x) for all z, for some decreasing
function r(z). To quickly secure his result here, integrate both the numerator and
denominator of R, (w) = —Uyy /U, by parts@ to get

= /¢(m,y|w)r(m,y)dw where  ¢(x, y|lw) = ff

Now, u, is LSPM since —u,,/u, falls in y, and thus the stochastic kernel ¢(x,y|w) is
LSPM in (z,y). Since r(z) is decreasing, its monotonicity is preserved by Corollary E(a),

and

w2 [ ol > [ oo > Ryw

ExAMPLE 6. To see that the MLRP need not preserve quasiconcavity, consider the

kernel matrix:

99 0
©=lp(s;,0)] =] 3 6 9
2 6 10

All 2x2 minors of @ are positive, and therefore ® is TP-2, and thus ¢ obeys the MLRP.
But the determinant of ® is —54, and thus ¢ is not TP-3, and so violates the PLRP.
Finally, for the quasiconcave function u (-) given by w(61) = —3,u(62) = 4, u(f3) = —
the expectation ®u = (9,6, 8) is strictly quasiconverz, and so not quasiconcave.

This result speaks to the key difference between the economic applications for the
MLRP and the PLRP. The MLRP applies to “vertical” preference models, with mono-
tone preferences. For example, if a firm earns a profit w(f) = 0 from hiring an employee
of type 0, then its expected profit II(s) is also monotone in the signal realization s, by
Corollary @(a). On the other hand, many economic settings assume a “variety” rather
than “quality” payoff structure. The PLRP is designed for such “horizontal” matching
environments. Voters, e.g., prefer political candidates closer to them. Also, in matching
models, individuals frequently seek out more kindred partners. To be specific, if a firm
of type 7 incurs the quadratic loss (7 — 6)? from hiring an employee of type 6, then its

expected payoff I1(s) is also quasiconcave in the signal realization s, by Corollary E(b)

Let cdf ®(s,0) f o(s,t)du(t) correspond to stochastic kernel ¢(s, 8)du(0).

UFor U, = [ —f'(z —w)u(z,y)dz = [ f(z—w)uy(z,y)dz, and —Uyy = [ f(z —w)ug(z,y)r(z,y)dz.

8
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Figure 1: Vertical Example. Assume a uniform prior on © = [—1,1]. We consider
the MLRP kernels ¢;(s,0) = c¢1(s)e 20 and ¢o(s,6) = co(s)(0s + 4)lg<14s/4. The
constant ¢;(s) ensures that ¢; is a probability density on § € [—1,1] for each s. For the
monotone function u(f) = 6, each expected payoff 0;(s) = f_ll ®i(s,0)0d0 is monotone
— solid red and dashed blue respectively for ¢ = 1, 2.

Corollary 3 (Stochastic Shifts) Let (¢, ) : S x © — R, define a stochastic kernel.
(a) If ¢ obeys the (strict) MLRP, then ®(sq,0) < (<)®(s1,0) for all 0 and sy > s;

(b) If ¢ obeys the (strict) PLRP, and ® is differentiable in s, then —®(s,6) obeys the
(strict) MLRP.3

Part (a) follows from Corollary E(a) and (c), writing ®(s,0) = [ ¢(s, t)u(t)dpu(t) with
u(t) = I;<p — which is obviously nonincreasing in ¢ for any 6.

Corollary a(b) offers another way to prove Corollary (b): Integrating by parts,
II'(s) = [ —®4(s,0)-2(7 —0)d0 is downcrossing by Proposition m, i.e. II is quasi-concave.

EXAMPLE 7. To see that the MLRP alone cannot guarantee that —®(s, #) is LSPM,
consider the stochastic kernel ¢(s, 0) = £(0s+4) for s € [—4,4] with support 6 € [—1,1].

12The weak part of this result is implied by Proposition 1(i7) and Lemma 1 in Chade and Swinkels
(2019). Their proof is direct and algebraic. I give an indirect (but simpler) proof using the VDP,
showing that if —®4 were not LSPM, then one could construct a contradiction to Corollary §(b).



Figure 2: Horizontal Example. For the stochastic kernels in Figure m, I plot the
expectations I1;(s) = fjl ®i(s,0)u(0)dl of the quasiconcave function u(f) = —(0—1/12)?
(sored and blue are i = 1,2, respectively). The PLRP kernel ¢ preserves quasiconcavity,
but ¢9 is not a PLRP kernel (by footnote [L3), and does not preserve quasiconcavity.
Finally, this plot shows that PLRP does not preserve concavity.

This obeys the strict MLRP, with

4 1

0127 1667 " )

(log ¢)89 =

But ¢ is not strictly PLRP, for then ¢*(log ¢)s would be log-supermodular, by Theo-
rem El(c) But in fact, 16¢*(log ¢)s9 = 1 is constant, from (B) Finally, check that

O(s,0) = [* Lts+4)dt = L (1+60) (s(0—1) +8) = —by(s,0) =& (167

Then —®,(s, ) is not strictly MLRP, since it is constant in NE

Since the PLRP preserves quasiconcavity and quasiconvexity, one might wonder if
it does the same for concavity and convexity. This is false. In particular, the solid red
curve in Figure 2 becomes strictly convex near the edges of the region shown. When the
posterior mean 0(s) = [ ¢(s,0)0d0 is concave (convex), and ¢ is a PLRP kernel, then
provided u(#) is monotone and concave (convex), so too is the expectation U(s). More

generally, any PLRP kernel ¢ amplifies concavity and convexity:

13The stochastic kernel ¢ was generated using a uniform prior on © = [—1, 1] and the signal density
h(s|0) = (0s 4+ 4). But scaling the density with indicator lg<;4/4, as in Figure 2, results in a kernel ¢
that violates even the weak PLRP, and in fact —®, violates the MLRP.
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Theorem 3 (Amplification) Assume that the stochastic kernel (¢, i) obeys the PLRP,
or that —®, obeys the MLRP. If u(0) is a concave (convex) function of an increasing
function v(0), then U(s) is a concave (convex) function of V(s) = [ ¢(s,0)v(0)du(8).

The proof in @ relies only on the MLRP property —®,. For a stochastic kernel of a
location family ¢(s, 8)du(0) = (s —0)dl, so that —P4(s) = ffoo —'(s —t)dt = ¢(s,0),
the result therefore only requires that ¢ obey the MLRP. If ¢ obeys the stronger PLRP,
Theorem a follows from Proposition m, as noted in Example 6 in Jewitt (1987).

ExAMPLE 8. Revisiting Example 5, Theorem E(b) offers another condition for the
interim utility function U(w) = Elu(w + S)] = [ f(z — w)u(z)dx to preserve the risk
aversion order of u. If u is more concave than v, then U is more concave than Flv(w+.S)]
provided f obeys the PLRP. And since f is a location density, it suffices that f obey
the MLRP, by the remark after Theorem E In particular, following Pratt| (1988), the
risk premium rises in risk aversion when final wealth X = S + W is the sum of two

independent random variables, provided that one of them has a log-concave density.@

ExAMPLE 9. In Holmstrom ([1979), a principal chooses a profit-sharing rule a : © —
R to maximize [ ¢(s,6)(8 — a(f))dd, where the density ¢ over profits # depends on the
agent’s (unobserved) effort s. A risk-averse agent chooses s to maximize expected utility
of his profit share less effort costs, namely U(s) = [ ¢(s, 8)u(a(f))df—c(s). The standard
first-order approach replaces the agent’s incentive constraint with the F.O.C. U’(s) = 0.
Jewitt (1988) then sought conditions justify the first-order approach, observing that if
effort costs are convex, then it suffices that [ ¢(s,6)u(a(d))dd is concave in s. And
by Theorem B, this holds provided that (i) ¢ obeys the PLRP, (ii) expected profits

[ ¢(s,0)0d6 are weakly concave in effort s, and (iii) u(a(f)) is concave in 6.

4 Sign Changes of Optimal Actions

Consider a decision maker DM who earns a differentiable payoff u(a, ) from choosing
action a € A in state # € ©. I now assume that A, © C R are compact subsets. Milgrom
and Shannon (1994) established that the optimal action rule is monotone in the strong
set order provided u(da’,0) — u(a,#) is strictly upcrossing@ in 0, for any @’ > a. If u is

differentiable in a, then it suffices that marginal utility u,(a, ) is weakly increasing in

14This is closely related to Theorem 5 in Jewitt (1987).
15f R+ R is strictly upcrossing in x if whenever f is nonnegative (positive) at z, it is nonnegative
(positive) at any o’ > x. Weakly upcrossing allows weakly positive to follow strictly positive.
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6 for all a. And if u, is strictly increasing in 6, or if u is also strictly concave in a, then
the optimal action is monotone — any selection of optimal actions is monotone in 9.@

Assume that the DM sees only a signal s € S about 6, yielding a posterior density
¢(:]s). Let V(a,s) = [,cq #(0]s)u(a, B)df be the expected utility of action a given s, and
define a*(s) = argmax,ea V (a, s). If the kernel ¢ obeys the MLRP, and u,(a, #) is mono-
tone up (down) in #, then a*(s) is monotone up (down) in the strong set order (SSO).
For given u,(a,#) monotone in #, we have V,(a,s) monotone in s, by Corollary E(a)
But then a*(s) is monotone in the SSO, by Milgrom and Shannon (1994).@ In fact, any
selection from optimal action map a*(s) is monotone if V; is strictly increasing in s.

I now ask when the argmax a*(s) is quasiconcave or quasiconcave in the SSO, so

either monotone up, or monotone down, or first monotone up and then monotone down.

Corollary 4 Let a*(s) = argmaxaca [y ¢(0|s)u(a,0)df. If ¢ obeys the PLRP and
uq(a,0) is hump-shaped (U-shaped) in 6, then a*(s) is quasiconcave (quasiconvex) in the
SSO. If u is also strictly concave in a, or if ¢ obeys the strict PLRP and uqg is strictly

downcrossing (upcrossing) in 0, then a*(s) is quasiconcave (quasiconvezx) in s.

Proof: Corollary B(b) gives the first claim: For quasiconcavity of u,(a, ) in 6 yields
quasiconcavity of V,(a, s) in s, and thus V,, is downcrossing. As above, V5 > 0 (Vs < 0)
implies an optimal action that is monotone up (down) in the SSO. For the final assertion,
if ¢ obeys the strict PLRP and wu,g is strictly downcrossing, then by the strict VDP
(Proposition m), V, is quasiconcave in s, and level on no subintervals. Thus, V,, is
downcrossing and can only vanish at a single point s. When V,; > 0, the optimal action

is monotone up; when V,, < 0, the optimal action is monotone down. ([l

EXAMPLE 10. Assume u(a, ) = —(a — 6)?. Since u(a, 0) is strictly concave in a, so
is V(a,s) = [yee ¢(0ls)u(a,d)dd, and there is a unique optimal action a*(s). And since
U, = —2a + 20 is increasing in €, Corollary @ gives a monotone optimal action. In fact,
a*(s) = 01(s) — the increasing function in Figure 1 — via the FOC:

d— [ 6*5(3*9)2(a—9)2d9 . [t e 36=9%0dp

= a'(s) =

< - = = 01 (s
da  [! e=306-0%qp S e st )

16For if uqg > 0, then as > aq and ' > 6 imply f (uq(a,0')—uq(a,0))da > 0. So if as is optimal at 6,
ie. fal uq(a,0)da > 0, then a; < as is suboptimal at 6'. If u is strictly concave in a, then uniqueness
of the optimal action implies that monotonicity in the SSO coincides with standard monotonicity.

17Tt is a monotone function — not just a monotone SSO correspondence — given a unique optimal
action; this happens if u (and so V) is strictly concave in a.

18By Corollary P(c), this premise follows if ¢ obeys the strict MLRP and u, is strictly monotone in 6.
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Likewise, u(a,f) = —(a — 6?)? has a unique optimal choice a*(s). Since uy(a,0) =

—2(a—6?) is U-shaped in 6, the optimal action a*(s) is quasiconvex in s, by Corollary @

ExXAMPLE 11. Bob believes that his effort b is a complement to his co-author Ann’s
productivity 0 for # < 1, but becomes a substitute once 6 > 1. Given effort cost %bQ,
Bob’s payoff is

b — 1?2 if9elo,1
uB(b,0) = 0" 16 €0,1]
b(2—0) —ib* if 0 e (1,2

But Bob only sees Ann’s effort a, and thinks that 6 has a density ¢(f|a) that obeys the
PLRP. By Corollary @, Bob’s optimal effort is quasiconcave in Ann’s observable effort.

5 A Peasant’s Proof of the VDP

The proof of Karlin’s variation diminishing property for single-crossing functions with
TP-2 kernels is straightforward. But Karlin’s proof of the VDP, Proposition m, is difficult
to follow, since it uses Cauchy-Binet matrix decompositions that are not standardly
taught in linear algebra. This may explain why it has seldom been applied in economics.

I now offer a novel “peasant’s proof” of Karlin’s VDP within reach of freshman linear
algebra. To understand it, notice that the contrapositive of the VDP would assert that
(a) if U(s) = [ &(s,0)u(@)du(f) crosses zero more than n times, then u(f) must cross
more than n times; and (b) if U(s) is n-crossing and initially downcrossing, then w(#) is

not n-crossing and initially upcrossing. I prove an equivalent contrapositive result:

Lemma 1 (VDP Contrapositive) Let © C R be finite or a subinterval. Assume
[ ¢(s,0)u(0)du(P) is n-crossing (has n weak sign changes) on some S’ C S, initially —
to+ (+ to —), and ¢ is TP-(n+1) (resp. ¢ is strictly TP-(n+1) and u nondegenerate).
Then w is n-crossing, initially — to + (+ to —) on some subset © C ©.

Proof: First, posit a finite state space © = {6;/0; < --- < Oy}. I use inductiononn < N.

THE CASE n = 1. Let ¢ be TP-2. Picking a case, assume ), o ¢(s,0)u(f) crosses
+ to —on S C 5. Pick s; < sy such that (f) on = > g @(s1,0)u(d) > 0 while
Ay = Y peo P(52,0)u(f) < 0, each inequality strict for the weak VDP. To prove that u
crosses + to — on some ©' C O, it suffices to prove that it is not upcrossing on ©.

For a contradiction, pick 6* € © with u(f) < 0 for § < 6* and u(d) > 0 for 6 > 0*.
Then:

aw= Y SR 0u) + 3

6<6 ¢(s1,0 6>6"

¢(52, 9)
¢(317 9) ¢(81> 9)u<9)
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Given TP-2, ¢(s9,0)/¢(s1,0) rises in 6, and u(f) < 0 in the first sum and u(f) > 0 in

the second, we have a contradiction to ay < 0:

SQa ¢(827 9*) ¢(32a 9*)
> P(s1,0 =N B(s, )u(f) = ——"—=a; >0 6
For the strict VDP, strict TP-2 implies a strict first inequality in (B) (i.e. not ap < 0)
unless ¢(s1,0)u(f) = 0 for all 6 # 6*. If this holds then (I) reduces to ag = ¢(s1, 0% )u(6*),
which is strictly negative by nondegeneracy and w(6*) < 0. This contradicts ay > 0.

INDUCTIVE HYPOTHESIS. Assume that if Y, ¢(s, 0)u(6) is (n —1)-crossing (has n weak
sign changes for the strict VDP) with an initial + to — (— to +) on S’ C S, and ¢ is
TP-n (resp. strictly TP-n with u nondegenerate), then u (+) is (n — 1)-crossing with an

initial downcrossing (upcrossing) on some 0’ C ©.

PROOF FOR n CROSSINGS: Assume ¢ is TP-(n + 1), and that Y, o ¢(s;, 0)u(0) is n-
crossing with an initial downcrossing on S’ C S. So we can choose s; < -+ < §,41 In S,
and reals {a;}"*} with alternating signs (—1)""a; > 0 (and > 0 for the strict VDP),
with:

S b(sy, 0)ull;) =5 Vje{L,2,... n+1} (7)

We need to prove that u(f) is n-crossing on some © C © with an initial + to —.
Now, by (@), > yco (55, 0)u(P) is (n—1)-crossing (has n weak sign changes, for the strict
VDP) on {si,...,s,} with an initial downcrossing, and similarly (n — 1)-crossing (has
n weak sign changes, for the strict VDP) on {ss,...,s,11} with an initial upcrossing.
By the inductive hypothesis, u(f) is (n — 1)-crossing with an initial + to — on some
©; C ©, and (n — 1)-crossing with an initial — to + on some ©y C ©, and thus has
at least n total crossings. We need only rule out that u(#) is n-crossing on ©, with an
initial — to +.

For a contradiction, let u(#) be n-crossing on © with an initial — to +. So we can
choose i1 < iy < -+ < i, such that u(6;) < 0 for i < iy, u(f;) > 0 for i € (iy,i2), and
alternating so on, upcrossing at i, iff n is odd Choose an i* > in with u(6;+) # 0, so
that

w(0;) > 0 if n is odd, u(6) < 0 if n is even (8)

We have identified an index set Z = {i*,i1,...,4,}. Since (H) consists of n+ 1 equations

Y Naturally, (i1,42) is the set of indices ij, with i; < i < is.
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in N > n + 1 unknowns, I will only solve for the unknowns u(6;) for i € Z, namely:

Prie Py P, u(b;) 01 = D g tin iy PLiU(07)
Goir P24 D2, u(,) | 02 = D g tin v, iny P2,00(07)
Oni1ic Pnylin 0 Pntlin u(0;,) Qny1 — Zigé{i*,h 77777 in} ¢n+1,iu(9i)

where I abbreviate ¢;; = ¢(s;,6;). Define the matrix ® = [¢;;] with j € J =
{1,2,...,n+ 1} and ¢ € Z. Here, I simply assume ® non-singular. Appendix §@
explores the singular case, which is possible if ¢ is weakly but not strictly TP-(n + 1).
Let (i,41,...,%,) and B(iy,...,43,) be the determinants of ®, but with the first
column replaced by (¢;;)jes and (o;);ez, respectively. As a determinant is linear in the

first column, Cramer’s rule yields:

ﬂ(il, ig, PN ,Zn) — Zi%{i*,ihig,...,in} 5(2, il, ig, PN ,Zn)u(ﬁz)

U(QZ*) N 5(i*7i17i27"'7in>

(9)

I prove that w(67) < 0 if n is odd, and w(#) > 0 if n is even, contradicting (E)
This follows if 5(iy,...,4,) > 0, with all §(¢,41,42,- -+ ,i,)u(f;) < 0, and denominator
d(i*, 11,09, - ,in) <0 (> 0) if n is odd (even).

Since the kernel ¢ is TP-(n 4 1), any matrix determinant §(i,y,4s,...,4,) is non-
negative if i < 4, (where u(#;) < 0, by construction), nonpositive if i € (i1,42) (where
u(6;) > 0), etc Bl In each case, 0(i,11,1%2,...,10,)u(d;) < 0. Similarly, the determinant
Bi1, ..., in) >0, as (=1)7"a; > 0. All told, the summation in the numerator of (Q) is
nonnegative, and the denominator is negative iff n is odd, contradicting (B)

Finally, if © C R, the proof goes through directly except (H) To get this equation,
partition © into N equally sized intervals ([;). Let 6; be the midpoint of I;, and define
¢ji = ¢(s;,0;)pu(1;), where p is the prior measure over ©. Choose a partition fine
enough that the sequence (u(6;))Y, is n-crossing with an initial upcrossing, and such
that [ ¢(s;,0)u(0)du(f) has the same sign as o = SOV byau(8;) for j € {1,2,... ,n+1}.

Such a selection is possible by the continuity of the functions ¢ and wu. O

201f 4 € (4m, tm=+1), then rearranging the columns in ascending order — so as to obtain a matrix with
a non-negative determinant, by TP-(n + 1) — entails swapping column 4 with i1, then ¢ with is,..., then
¢ with 4,,; a total of m adjacent column swaps, which scales the determinant by a factor of (—1)™.
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6 Conclusion

The VDP is an important and increasingly applied result in optimization theory. This
paper makes two contributions on this tool in monotone comparative statics under un-
certainty. First, since Karlin (1968) text is an important text that is somewhat opaque,
and long out of print, I offer a novel and simple proof of the VDPEI 1 largely flesh out
the theory of the proportionate likelihood ratio property — a tractable formulation of

Karlin’s total positivity of order 3 that has only seen sporadic application in economics.@

A  Omitted Proofs

A.1 Equivalence of TP-3 and PLRP: Proof of Theorem E] (a)
¢: S x0O — Ris TP-3 iff it is TP-2, and also for any 0; < 65 < 5 and s1 < s9 < S3,

with ¢;; = ¢(s;,0;), the 3 x 3 determinant of (¢;;) must be positive. Expanding it yields:

¢ ¢12 ¢13 _¢ ¢11 ¢13 ¢ll ¢12
M be du || b o bu1 b

e[(5-2) (B (2 2) (22
13 P12/ \ P12 on P12 ou/) \ 13 12
So ¢ is (strictly) TP-3 iff, in addition to being (strictly) TP-2, the square bracketed term
is nonnegative (positive). Defining ¢(s,0) = ¢(s,0)/d(s1,0) for s > s;, write this as

+ ¢33

6(53, 03) — 6(53, 62)
5(33,92) —5(53,91)

6(82, 93) — 6(52, 62)

Z (>)€(82, (92) — 6(52, 91)

Since this holds for any s3 > so, this rearranges to the PLRP Condition:

6(8793) —6(5,92) .
0(5.0,) —U(s,0,) | % (10)

A.2 Equivalence of PLRP and PLRP*: Proof of Theorem El(b)

We show that (I0) holds iff ¢y is LSPM, assuming that ¢y exists and ¢y > 0 (for TP-2).

2Park and Smithl (2008) used the VDP to characterize equilibria in silent timing games.

22Beyond_the applications already cited, Choi and Smith (2017) recently showed that Quah and
Strulovici (2012)’s single-crossing aggregation result can be derived from the VDP, and extended it to
provide conditions under which a sum of quasiconcave functions is quasiconcave.
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STEP 1: NECESSITY. In particular, (I0) must hold if 5 = 0y +¢ and 6 = 0, —¢, for
any 0y and e. Divide numerator and denominator by €. In the limit as € — 0, this says
that l(s, 62)/ly(s,0;) increases in s, for any 6y < 6; that is, fp(s, ) must be LSPM.

STEP 2: SUFFICIENCY. We must show that ¢y LSPM implies (). If ¢ is differen-

tiable in 6, then ([) is increasing in s iff its derivative w.r.t. s is positive:

(Us(s,05) = Ls(s,02)) (€(s, 02) — £(s,61)) — (£(s,03) — L(s,02)) (€s(s,02) — €s(s,601)) > 0
Rewrite this as follows, defining e =0y — 6, >0, e3 =603 — 0, > 0, and 6, = 0:
(Cs(s,0+e2)—Ls(s,0)) (U(s,0)—L(s,0 —e1)) > (L(s,04e2)—L(s,0)) (ls(s,0)—Lls(s,0—¢1))

Now, this holds with equality at e = 0, so it holds Ve, > 0 provided the LHS is

increasing in €. Taking derivatives w.r.t. €9, this yields the sufficient condition:
lsp(s5,0 4+ €2) (U(s,0) — U(s,0 —e1)) — Lo(s,0 + e2) (Ls(s,0) —ls(s,0 —e1)) >0 (11)

But () holds with equality at €; = 0, and so to show that it holds Ve; it is sufficient
that the LHS be increasing in e;:

ESQ(S, 0 + 82)69(8, 0 — 81) Z g@(S, 0 + 82)659(8, 0 — 81)

Replacing 6 + 5 and 0 — e; with (respectively) 05 and 6, < 0, this rearranges to ¢y(s, 6)

is LSPM: Cug(5.02) lug(5.0)) (o(5. 62)
s0\S, U2 s0\S, U1 o(S, 09 .
> < in s for 6, > 6
s 0) ~ 1o(s,00) " Ta(s.01) | 2> 0

A.3 PLRP* in Terms of ¢: Proof of Theorem [ (¢)

We need to show that for any 0 and so < s, €y(s,6) = ¢(s,0)/d(s0,0) is LSPM iff both
¢ and ¢?(log @)s9 are LSPM. Differentiate (s, 0) in 6 to obtain

¢(s,0)
¢(30, 9)

Assume ¢ is LSPM, as it is well-known (and clear from (2)) that ¢ is LSPM iff ¢y > 0.
STEP 1. SUFFICIENCY. Assume ¢?(log ¢)s is LSPM. To prove that £5 is LSPM,
i.e. that lg(s2,02)0e(s1,01) > Ly(s1,02)lg(s2,61) for all so > s; and Oy > 04, it suffices to

69(3, 6‘) =

((log ¢(s,0))e — (log ¢(s0, 0))s) (12)
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prove that ¢y > 0 implies (log fy)sg > 0. For if £y(s1,02) = 0, the inequality holds trivially
by g > 0. 1If ly(s1,605) > 0, then also ly(sz,02) > 0 by (I2) and LSPM of ¢. Then
lo(s1,02)/la(s2,02) rises (weakly) as s | 6; by the MLRP — equivalent to (log fg)gs > 0
when ¢y > 0 — yielding the desired inequality.

So choose sy < s and 0 with ly(s,0) > 0. Differentiating (I2) in s yields

(log ¢(s,0))os

(log E@(Sa ‘9))5 = (log (;5(8, ‘9))8 + (log QZS(S, 8))0 — (log gb(so, Q))e

Differentiating in 6 yields (log fy)s = (log ¢(s,6))se/ ((log ¢(s,0))s — (log ¢ (s, 0)))> X

((log ¢(s,6))p — (log ¢(s0,6))s)* + ((log &(s,6))g — (log B(s0, 0))) {PEit=Goee

(13)
— ((log ¢(s,0))ap — (log &(s0,0))an)

To show that this is non-negative, the derivative in sq is (log ¢(sg,0))gs X

2o (s, )+ 2oso(on s — ECGE - R

= (log [(¢(s0.6))" (log ¢(s0.8))s0] )y — (log [(#(5,6))* (log é(5,6))sa] )~ (14)

This is nonpositive by LSPM of ¢?(log$). and sq < s, implying that expression (I3)
weakly rises as sq falls. Since it vanishes at sy = s, it is non-negative for all sy < s.
STEP 2. NECESSITY. If ¢*(log¢)s is not LSPM, then we can choose a point
(s,0) where (log (¢*(log ¢)se)), strictly falls in s. Thus (I@) is positive for all sy < s in
some neighborhood of s. So (I03) vanishes at sy = s and falls (strictly) as sy falls in a
neighborhood of s, implying that Jsy < s and 6 with fy4(s,6) > 0 and (I3) negative. So
ly is not LSPM. ]

A.4 Weak VDP: Singular Matrices in Proof of Lemma

Assume now the matrix ® in the §E proof is singular: columns with indices in Z =
{i*,i1,...,i,} are linearly dependent. As before (E), toward a contradiction, assume
u(6;) > 0 for i,, < i < iy with m odd, and u(6;) <0 for i, < i < ippyq With m even.
STEP 1. I first identify linearly independent columns (¢;;);e; with specific prop-
erties that will be used to derive a contradiction in Step 2. Start with any linearly
independent column vectors (¢;;);es with indices in Z' C {iy,...,4,}. For each i ¢ 7',

from lowest to highest, replace Z' with Z' U {i} if two conditions hold: First, column
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vector (¢;;);es is linearly independent from columns with indices i € Z’. Second, if
i € (Imyime1) for m =1,2,... n, and there are fewer than m indices below ¢ in the set
7’ so far. This construction ensures that each i € (ip,im41) \ Z' has at most m indices
below it in 7' If it has fewer than m indices below it in Z' , then 7 is the index of a
column linearly dependent on those in Z’, for otherwise it would have been added to Z'.
Finally, enumerate (say M) indices in Z' as k; < ky < -+ < ks, where M < n@

STEP 2.  Select (M + 1) row indices J' C J such that the matrix [¢;,] with
i € 7' and j € J' contains at least one nonvanishing M x M minor (this is possible
by linear independence of the M vectors (¢;;)jes with ¢ € Z’). Assuming wlog that
J ={1,2,..., M + 1}, write (H) as follows for j € J":

1
_ (al — Zi%z/ ¢17ZU(91)) ¢1.,k1 Ce gb].,.kM U(ekl) B 0
_ (OéMJrl — Zigéf ¢M+1,iu(9i)) ¢M+1’k1 o ¢M+1J€M [ (‘ng) !

As M + 1 equations in M unknowns, the determinant of the LHS matrix vanishes:

—q Prry 0 DLk o1, OPrk, T Dlky

2

it T

—QM41 DMk DMk OM41i OM4Lk “°° OM4Lky

Now, the first determinant is negative — by (—1)7"'a; > 0 (the weak VDP premise
in (H)), total positivity, and linear independence.E So the sum must be positive. But
for i ¢ 7', the ith summand is nonpositive: By Step 1, either (a) column ¢ is a linear
combination of the remaining columns, so that the matrix is singular, or (b) ¢ € (4, im+1)

has exactly m indices below it in Z’, and thus the determinant has sign (—1)" — weakly

opposite to the assumed sign of u(6;). A contradiction. 0
23Since I’ starts out as a subset of {iy,...,4,} (with exactly m indices below i), and only adds indices
1 € (im,im+y1) with fewer than m terms below them in Z'.
24In particular, the highest index i > i,, has at most n terms {k1,...,kas} below it in Z'.

ZExpanding along the first column, the determinant is Zj\/:lrl (=1)7"2a;A; 1, where A; ; is the minor

obtained by deleting row j and column 1; each minor is nonnegative by total positivity, and at least
one is nonvanishing by the linearly independent selection of rows and columns.
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A.5 Location Families: Proof of Corollary m

Define ¢(s,0) = (s — 0). Then (log¢(s,0)), = (logv(s — 0)); = (s — 0), so that
(logp)sp = —0'(s — 0). Then ¢ obeys the MLRP — i.e. is LSPM — iff ' < 0. By
Theorem m(c), ¢ obeys the PLRP iff additionally ¢*- (log ¢) is itself log-supermodular,

requiring

0% (2log ¢ +log ((log ¢),)) - |,
D500 =

and therefore

62 15) 0 5// -0
log @) + 5 55 log(=d'(s = 0)) = 5520(s — 0) + %ﬁ

= >0
0s00 00 -

PTR

i.e. 20 + 0"/ must be weakly decreasing.

A.6 Truncations: Proof of Theorem

Let ¢ be a TP-3 function with ¢(6,60) = 0. We want to show that for any 0 < 0 < 05
and s; < $9 < S3:

O11llg, <5y P12llo,<s,  P13lloy<s

Po1llg, <5, P22llo,<s,  P23lloy<s, | =0 (15)

¢31]I91 <s3 ¢32H92 <s3 ¢33H93 <s3

where ¢j; = ¢(s;,0;). If all indicators are 1, then ¢ TP-3 gives this. If two or more
indicators vanish, the first indicator inequality to fail is 05 < s, followed by 65 < s, or
05 < s1. So either the last two entries in the first row vanish, or the first two entries in
the last column vanish. Either way, the determinant is non-negative by ¢ TP-2.

So we only need to verify TP-3 in the case where exactly one indicator equals zero,

in which case it will be the top right entry Ip,<5,. Then (IH) reduces to:

o1 ¢z 0
0 < | ¢o1 oo Po3 | = Pr1P22033 — P11P23P32 — P12P21P33 + Pr2Ps1P23  (16)
31 P32 P33

So (11092 — P12091) P33 > Ga3 (P11032 — P12¢31). Both sides of this inequality are non-
negative by the fact that ¢ is LSPM, so we can rearrange it as follows:

¢22¢33 - %¢21¢33 >
¢32¢23 - %¢31¢23 N

(17)
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The LHS of (I(7) is decreasing in 212 whenever the following is nonpositive:

e (¢22¢3g _ %@1@3) ~ bords <¢32¢23 _ %@1@3) — sy (G1daz — dyadar)

which holds by LSPM: ¢35/¢90 > ¢31/¢91. So (1), and hence (I8), are tightest at the
mazximum value of ¢12/p11 = (81, 02)/d(s1,61). By LSPM, this ratio is increasing in s,
and so its upper bound is attained at s; = 3, by the assumed failure of the inequality
05 < s1. So to verify TP-3, we need only check (I8) at s; = #3. But here, by our
assumption ¢(0,6) = 0, we have ¢35 = ¢(s1,65) = 0. So the indicator Iy,<s, does not
affect the determinant (I@). Then the determinant is non-negative, since ¢ is TP-3. O

A.7 Stochastic Shifts: Proof of Corollary (b)

Assume ¢ obeys the PLRP. By Corollary E(b), the following is quasiconcave for any

quasiconcave u : © — R:
s) = [ &(s,0)u(0)du(9)

To prove that —®4(s, ) is LSPM, I construct a quasiconcave function u (-) for which
quasiconcavity of B, would otherwise fail.

To this end, define (s, 0) = —®4(s,0). If ¢ is not LSPM, then (log (s, 0))gs < 0 at
some (s,0), i.e. ¥(s,0)/1(s,0) is strictly decreasing in s at (s,6). By continuity, this

holds also near (s,6), and so we can choose s; < so < s3 and 07 < 05 such that

%(51,9) > ¢9(82,9) > %(33,9)

P(s1,0) ~ P(s9,0) ~ (s3,0) V6 € [01, 6]

So 1(s2,0)/1(s1,0) is strictly decreasing in 6 on [6,0s], by the first inequality, as is
¥(s3,0)/1(s2,0) by the second inequality. Let u : © — R be constant outside [0y, 0],
u'(0) = 1 in the left half of the interval, and in the right half of the interval

(fe ) / (o0, (s, 1))

As v/ is downcrossing, u is quasiconcave. Integrating by parts, By (s2) = [ 9(sq, 8)u'(6)d0,
which vanishes by construction. Since 1(s1,6)/1(s2,0) is increasing on [0, 92], we have

Bl (s1) = 0912 %@D(SQ,Q)U’(Q)CJH < 02 Since Y(s3,0)/1(sq,0) is increasing, the same

26By Karlin and Rubin (1956), if b(z) upcrosses at xo and a(x) is nondecreasing, then
JEo a(@)b(z)de + [ a(z)b(z)de > a(xo) [ b(z)dz, strictly so if a(z) is increasing on an interval with
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logic yields B! (s3) > 0. Then Bl (s1) < 0 < Bl (s3) for s; < sy < s3, and so B!, has a
strictly upcrossing portion, a contradiction.

For the strict claim, assume for a contradiction that ¢ obeys the strict PLRP, but
Y(s,0) = —Py(s,0) obeys only the weak MLRP. So (log#(s,0))ss = 0 at some (6, s),
and so again by continuity, we can choose s; < sg and 0; < 6, so that for all s € [sq, $9],
¥ (s,0)/1(s9,0) is constant in § on [fy, 63]. Now choose the same function u (-) as above;
again by construction, B! (s2) = 0, and so for all s € [s1, 2], (s, 0)/1(s2,6) constant

implies that B,(s) is constant on [sq, $o|, contradicting Corollary @(c) O

A.8 Amplification: Proof of Theorem

Given a stochastic kernel (¢, ) and functions u,v : © — R with v/ > 0, integrate
= [ &(s,0)u(0)du(d) by parts to obtain U'(s) = [ —®4(s,0)u'()d6. Similarly, if
= [ ¢(s,0)u(0)du(P), then V'(s) = [ —Dy(s 9) "(0)df. Define (0, s) = —,(0, s),
and assume that 1 is LSPM (by Corollary B(b), this holds if ¢ obeys the PLRP). Now
choose so > s; and write U'(s2)V'(s1) — U'(s1)V'(s2) as follows:E1

Uw(G,SQ dé} Uw (0,s1)v } Uw (0, s1)u (G)dé] [/w(Q,Sg)v’(e)dG}

/ w r, 52) / (9) — U’(r)u’(@)] w(r, 31)¢(9, Sl)drde

T, s1

W( >
/ / wgz,@g Yo' (r) — o' (0)u' ()] (0, $1) (7, s1)drdf

5]/ (ZE o ) (- ) Ol

By LSPM, (% — %) is nonnegative if r > 6 and nonpositive if r < 0. If u is

a convex transformation of v, then (u/(r) - u/(9)> Z 0iff r 2 6, and so U'(s5)V'(s1) >

v’ (1) v’ (0)
U'(s1)V'(s9) for all s5 > s1. So U is more convex than V. If u is a concave function of

v, the integrand is everywhere nonpositive, and so U is more concave than V. 0

b(z) # 0. Then [a(x)b(x)dz > 0 if strict inequality holds and [ b(z)dx = 0, or if [b(z)dz > 0 and
a(xg) > 0. Ditto, [a(z)b(z)dzx <0 if a(x) >0 is increasing while b(z) is downcrossing with [b(z)dz <0.

2"This algebraic argument mimics the proof of Tchebyshev’s inequality. An alternative geometric
proof, following Karlin (1968), uses the fact that a function is concave (convex) iff it crosses any line
at most twice, and if exactly twice, then initially from below (above, respectively). So if u : © — R
is a concave transformation of (increasing) v : ©® — R, then for any constants a, 8 € R the function
u(-) — (qu(-)+ B) is at most 2- crossmg, and if exactly 2-crossing, then initially from below. So by the
VDP, U(s) — (aV(s) = [¢(s,0)(u(8) — (aw(8) + B))d0 is also at most 2-crossing, and if exactly
2-crossing, then 1n1tlally from below That is, U is a concave transformation of V.
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